
Table of Contents
 CMEM ..1

 Introduction...1
 Downloading and compiling CMEM for Davinci..1
 Using CMEM on a target..1

i

CMEM

Introduction

The Linux C library user mode malloc() function allocates memory scattered in pages (4096 bytes each)
across the physical memory. As the Joule core on Davinci does not have an MMU to compensate for this
scattering, the DSP needs to work with contiguous buffers. This means malloc() cannot be used for
allocating buffers to be used by the DSP for processing.

The CMEM module is an ARM side module which allocates contiguous memory and maps it to user space. It
has a kernel mode as well as a user mode component. It currently only tested on Davinci, but have no direct
dependencies on the chip. It requires Linux kernel 2.6.x.

Downloading and compiling CMEM for Davinci

Make sure you have the Montavista Pro 4.0 toolchain in your path (arm_v5t_le-gcc etc.), as well as the
tool chain you used to build your kernel (if different than the Montavista Linux 4.0 LSP, which shouldn't be
the case once we have a real Montavista drop). This because the CMEM kernel module is built using the
kernel's own build system which will invoke this compiler.

Edit the file Rules.make in the CMEM top level directory to reflect your configuration. The options in this
file are well documented, and the file should be self explanatory.

When Rules.make has been edited execute make to build both the kernel and user space components,
followed by a make install to put the resulting binaries on your target filesystem.

If you want to generate the API documentation type make docs and the documentation will be generated in
HTML under the docs directory.

Using CMEM on a target

You first need to insert the cmemk kernel module. After starting your target, make sure you are in the
directory into where you installed the cmemk.ko kernel module, and execute (for example):

/sbin/insmod cmemk.ko phys_start=0x87800000 phys_end=0x88000000
pools=4x5000,3x10000

This will create 2 pools. One will have 4 buffers of size 5000 bytes, and one will have 3 buffers of 10000
bytes each. Note that these are the requested sizes of buffers which might differ from the actual page aligned
allocated size (which will always be >= the requested size). The exact size allocated and other information
about the pools can be inspected from the file /proc/cmem.

The memory pools will be located between the physical addresses phys_start and phys_end (an 8MB
chunk in this example). Note that you need enough memory here to fit all your pools, and that your mem=xM
kernel boot parameter must reflect this memory configuration.

If you set the configuration parameter to USE_UDEV you should be good to go. If you did not (perhaps you
don't have udev support in your kernel), you need to create /dev/cmem manually using the mknod
command (see man mknod). You need to know the "major number" assigned to cmem when it was inserted
as this is done dynamically. Either read it from /proc/devices, or you can type dmesg to get the kernel
output, in which the debug version of the kernel module outputs which major number was allocated. Suppose
the allocated major number is 254, then you would execute mknod /dev/cmem c 254 0 to create the

r1.5 � 19 Jan 2007 1

device file.

Now you can either write your own program or execute the apitest application (the apitestd
application is the same application but with debugging information enabled). The apitest application
allocates two buffers of the same size (size given in bytes as a parameter on the command line) and fills them
with the hexadecimal patterns 0xbeef and 0xfeeb. If you want to verify the application from the DSP just
open up CCS on the DSP and look at the physical addresses for the buffers given by the application and you
should see these patterns (the DSP has to be unlocked for CCS to be able to connect).

CmemModule � Texas Instruments, DAVDMDK/DM6446

r1.5 � 19 Jan 2007 2

	Table of Contents
	 CMEM
	 Introduction
	 Downloading and compiling CMEM for Davinci
	 Using CMEM on a target

