Revision: 6289
http://matplotlib.svn.sourceforge.net/matplotlib/?rev=6289&view=rev
Author: jdh2358
Date: 2008-10-21 17:58:18 +0000 (Tue, 21 Oct 2008)
Log Message:
-----------
fixed a docstring in mlab
Modified Paths:
--------------
trunk/matplotlib/doc/_templates/index.html
trunk/matplotlib/lib/matplotlib/mlab.py
Modified: trunk/matplotlib/doc/_templates/index.html
===================================================================
--- trunk/matplotlib/doc/_templates/index.html 2008-10-21 15:26:22 UTC (rev
6288)
+++ trunk/matplotlib/doc/_templates/index.html 2008-10-21 17:58:18 UTC (rev
6289)
@@ -16,7 +16,7 @@
<p>matplotlib tries to make easy things easy and hard things possible.
You can generate plots, histograms, power spectra, bar charts,
errorcharts, scatterplots, etc, with just a few lines of code.
- For a sampling, see the <a href="{{ pathto('users/screenshots')
}}">screenshots</a>, <a href="{{ pathto('gallery') }}">thumbnail gallery</a>,
and
+ For a sampling, see the <a href="{{ pathto('users/screenshots')
}}">screenshots</a>, <a href="{{ pathto('gallery') }}">thumbnail</a> gallery,
and
<a href="examples/index.html">examples</a> directory</p>
<p align="center"><a href="{{ pathto('users/screenshots') }}"><img
align="middle"
@@ -36,11 +36,12 @@
<p>For the power user, you have full control of line styles, font
properties, axes properties, etc, via an object oriented interface
or via a handle graphics interface familiar to Matlab® users.
- The plotting functions in the <a href="api/pyplot_api.html">pyplot</a>
- interface have a high degree of Matlab® compatibility.</p>
+ The pylab mode provides all of the <a href="api/pyplot_api.html">pyplot</a>
plotting
+ functions listed below, as well as non-plotting functions from
+ <a href=http://scipy.org/Numpy_Example_List_With_Doc>numpy</a> and
+<a href="api/mlab_api.html">matplotlib.mlab</a> </p>
- <h3>Plotting commands</h3>
- <br/>
+ <h3>Plotting commands</h3> <br/>
<table border="1" cellpadding="3" cellspacing="2">
Modified: trunk/matplotlib/lib/matplotlib/mlab.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/mlab.py 2008-10-21 15:26:22 UTC (rev
6288)
+++ trunk/matplotlib/lib/matplotlib/mlab.py 2008-10-21 17:58:18 UTC (rev
6289)
@@ -117,6 +117,7 @@
The following are deprecated; please import directly from numpy (with
care--function signatures may differ):
+
:meth:`conv`
convolution (numpy.convolve)
@@ -129,6 +130,9 @@
:meth:`linspace`
Linear spaced array from min to max
+:meth:`load`
+ load ASCII file - use numpy.loadtxt
+
:meth:`meshgrid`
Make a 2D grid from 2 1 arrays (numpy.meshgrid)
@@ -138,11 +142,14 @@
:meth:`polyval`
evaluate a vector for a vector of polynomial coeffs (numpy.polyval)
+:meth:`save`
+ save ASCII file - use numpy.savetxt
+
:meth:`trapz`
trapeziodal integration (trapz(x,y) -> numpy.trapz(y,x))
:meth:`vander`
- the Vandermonde matrix (numpy.vander)
+ the Vandermonde matrix (numpy.vander)
"""
@@ -247,13 +254,13 @@
to calculate the Fourier frequencies, freqs, in cycles per time
unit.
- *NFFT*
+ *NFFT*
The length of the FFT window. Must be even; a power 2 is most
efficient.
- *detrend*
+ *detrend*
is a function, unlike in matlab where it is a vector.
- *window*
+ *window*
can be a function or a vector of length NFFT. To create window
vectors see numpy.blackman, numpy.hamming, numpy.bartlett,
scipy.signal, scipy.signal.get_window etc.
@@ -478,7 +485,7 @@
.. math::
- C_{xy} = \frac{|P_{xy}|^2}/{P_{xx}P_{yy}}
+ C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}}
The return value is the tuple (*Cxy*, *f*), where *f* are the
frequencies of the coherence vector.
@@ -967,11 +974,11 @@
*y0*
initial state vector
-
+
*t*
- sample times
+ sample times
- *derivs*
+ *derivs*
returns the derivative of the system and has the
signature ``dy = derivs(yi, ti)``
@@ -1149,7 +1156,7 @@
Returns :
.. math::
- \lambda = \frac{1}{n}\sum \ln|f^'(x_i)|
+ \lambda = \\frac{1}{n}\\sum \\ln|f^'(x_i)|
.. seealso::
Sec 10.5 Strogatz (1994) "Nonlinear Dynamics and Chaos".
This was sent by the SourceForge.net collaborative development platform, the
world's largest Open Source development site.
-------------------------------------------------------------------------
This SF.Net email is sponsored by the Moblin Your Move Developer's challenge
Build the coolest Linux based applications with Moblin SDK & win great prizes
Grand prize is a trip for two to an Open Source event anywhere in the world
http://moblin-contest.org/redirect.php?banner_id=100&url=/
_______________________________________________
Matplotlib-checkins mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/matplotlib-checkins