Hi Yan,

I tried with 10,000 trees each with 1000 tips and it took a bit more than 1 sec:


R> tr <- rmtree(10000, 1000)
R> system.time(a <- .compressTipLabel(tr))
utilisateur     système      écoulé
      1.124       0.036       1.161

And yes the memory footprint is substantially decreased:

R> print(object.size(tr), unit="Mb")
850.6 Mb
R> print(object.size(a), unit="Mb")
315.7 Mb

What is the size of your problem?

Do you use a recent version of ape? This function was improved one or two years ago.

Best,

Emmanuel

Le 14/12/2016 à 16:16, Yan Wong a écrit :
Hi,

I’m reading in a large number of newick trees with the same tips, all from a single 
file. If I do trees<-read.trees() followed by trees <- 
.compressTipLabel(trees), it reduces the memory footprint well, but takes an age to 
run. I can’t help thinking this could be sped up during the reading process by 
passing an option to read.trees() to specify that the tip labels are the same in each 
tree in the multiPhylo object. Has anyone implemented such an option?

Cheers

Yan
_______________________________________________
R-sig-phylo mailing list - R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
Searchable archive at http://www.mail-archive.com/r-sig-phylo@r-project.org/


Pour nous remonter une erreur de filtrage, veuillez vous rendre ici : 
http://f.security-mail.net/3014IN50W4c



_______________________________________________
R-sig-phylo mailing list - R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
Searchable archive at http://www.mail-archive.com/r-sig-phylo@r-project.org/

Reply via email to