JONES

Here in France trying to answer you on a tiny keyboard.

P.H. as you
note has not adequately considered spin energy states in a multibobody QM system
and transitions from excited states to lower energy states.

Until this gets addressed well with good predictions,  IMHO improvements  will 
only happen with empirical correlations.

Hopefully the TPT boys will have some better insight whether empirically based 
or otherwise.

Bob


Sent from my Verizon Wireless 4G LTE SmartphoneJones Beene 
<jone...@pacbell.net> wrote:
It should be mentioned that this version, which envisions gamma radiation
being fractionalized to DDL instead of all the way down to phonon vibration,
could be at least partially falsifiable.

Here's how it could be done.

QSI makes nanoparticles of NiO which are close to the proper size for
quantum dots. Once loaded with deuterium, checking to see if they will at
least reduce, shield or diminish a 12 MeV gamma beam is as simple as
providing the beam and detecting the intensity - with the loaded nanopowder
compared against the unloaded nanopowder.

                _____________________________________________

                The almost intractable problem for explaining LENR to
physicists, or even undergrads in physics - is that there is no gamma -
presenting a major obstacle to our understanding if there is to be real
fusion. Almost all of the other problems in Ni-D, the Mizuno reaction,
including lack of transmutation products and lack of neutrons have a
possible explanation, since there is a known reaction with a short half-life
that converts Ni58 and a deuteron to Ni60, leaving no lingering
radioactivity. As mentioned in prior postings, Ni58 is a bit of an anomaly
in having too few neutrons (lower amu than cobalt, for instance). Ni58 could
be favored for this kind of reaction.

                Unfortunately, this reaction is so energetic in net energy,
that the lack of gamma is almost as problematic as the situation with
putative fusion of deuterons to helium. The most accepted solution to the
lack of gammas is based on Hagelstein's evolving theory, which can be called
gamma fractionalization. That theory is based on downshifting of gamma level
energy, but without the photon emission, all the way to phonon vibrations at
8-16 THz, which is a massive drop of about 8-9 orders of magnitude - or a
ratio of at least 100,000,000:1 (100 million to one) - which is an enormous
reduction in energy over a very short time frame.

                Yet, the Hagelstein model, as a general premise could apply
to the fractionalization to other energy levels - other than all the way to
weak phonon vibrations, which are a fractional eV. For instance, a
fractionalization down to the DDL (dark matter) level, is intriguing - in
which case the ratio is much easier to deal with. Apparently, PH has never
considered this as an option, so it is worth mentioning as a possibility for
future inclusion into a broader theory.

                In Ni-D, such as the recent Mizuno experiment, where
deuterium would transmute Ni58 to Ni60, if that much energy (12 MeV prompt +
6 MeV delayed) could be taken away as spin, transferred to a large number of
atoms - then voila, that would be a solution. The spin would serve to
decrease electron orbitals of deuterons to form the DDL. The ratio which is
required drops from (100 million to one) all the way down to a few thousand
to one.

                In short, Hagelstein's general premise can be improved via a
DDL mechanism (dense deuterium or deep Dirac level). For this to work in
practice, there would need to be perhaps 3000+ molecules of
deuterium-loaded-nickel, operating as a unit (quantum dot unit) with some
level of quantum wave coherence, with which to share the 12 MeV... which
energy release would provide about 3.5 keV per molecule of deuterium - to
push the molecule down into the DDL state. This level would have escaped
detection. The quantum dot is typically the correct size, but is typically a
semiconductor, like NiO instead of a metal.

                Most of these "shrunken" molecules simply re-expand, giving
back the 3.5 keV (which is the signature of "dark matter") which is
undetectable in operation, but if at least one or two of them were to fuse
to nickel, in order to repeat the cycle, then we have a limited chain
reaction.

                The problem is that even if this scenario worked most of the
time, we should see a percentage of high energy gammas. When none are seen,
this casts doubt on the entire explanation.

                But it is worth mentioning, especially if Mizuno's new
results should report an relative increase in Ni60 relative to Ni58 - or
radiation in the 3-4 keV range.

                Jones


Reply via email to