
1.
2.

FontMetrics Differences between different Java
Versions

Overview
FontMetrics values differ for the same font on the same system, between different Java versions, causing a number of problems in the
application for code that depends on these metrics.

This page describes those differences in more detail than was done in the .initial investigation

Terminology Overview

If you are not familiar with font metrics terminology (used throughout this investigation), check the and this java.awt.FontMetrics JavaDoc tut
.orial

As a quick reference, the diagram below shows some of the measurements corresponding to FontMetrics methods:

A Font also has a size, which is explained in the :java.awt.Font#getSize JavaDoc

public int getSize()

Returns the point size of this , rounded to an integer. Most users are familiar with the idea of using to specify Font point size
the size of glyphs in a font. This point size defines a measurement between the baseline of one line to the baseline of the
following line in a single spaced text document. The point size is based on , approximately 1/72 of an inch.typographic points

The Java(tm)2D API adopts the convention that one point is equivalent to one unit in user coordinates. When using a
normalized transform for converting user space coordinates to device space coordinates 72 user space units equal 1 inch in
device space. In this case one point is 1/72 of an inch.

Returns:

the point size of this Font in 1/72 of an inch units.

Conclusions

The position of the baseline appears to have shifted significantly upwards with FreeType for a number of fonts.
Rounding errors (either in T2K or FreeType) may be present in some several Font metrics

Investigation Notes

Data generation

A slightly adapted version of the code written in the initial investigation is shown below:

http://ies-iesd-conf.ies.mentorg.com:8090/x/XBZLBw
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/FontMetrics.html
https://docs.oracle.com/javase/tutorial/2d/text/measuringtext.html
https://docs.oracle.com/javase/tutorial/2d/text/measuringtext.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.desktop/java/awt/Font.html#getSize()

package demo;

import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.Arrays;
import java.util.List;

public class FontMetricsDataGenerator {

 private static List<Integer> STYLES = Arrays.asList(Font.PLAIN,
Font.BOLD, Font.ITALIC, Font.BOLD | Font.ITALIC);
 private static final String EXAMPLE_STRING = "The quick brown fox
jumps over the lazy dog";

 public static void main(String[] args) {
 titles();
 List fontList = getFonts();
 fontList
 .stream()
 .sorted(FontMetricsDataGenerator::comparator)
 .forEach(FontMetricsDataGenerator::reportFontMetrics);
 }

 private static List getFonts() {
 GraphicsEnvironment ge = GraphicsEnvironment.
getLocalGraphicsEnvironment();
 Font[] fonts = ge.getAllFonts();
 return Arrays.asList(fonts);
 }

 private static void titles() {
 System.err.println("** java.vendor = " + System.getProperty
("java.vendor"));
 System.err.println("** java.version = " + System.getProperty
("java.version"));
 System.err.println("** java.vm.name = " + System.getProperty
("java.vm.name"));
 System.err.println();
 System.err.println();

 System.err.print("Name");
 System.err.print("\tFamily");
 System.err.print("\tStyle");
 System.err.print("\tSize");
 System.err.print("\tAscent");
 System.err.print("\tDescent");
 System.err.print("\tHeight");
 System.err.print("\tLeading");
 System.err.print("\tMaxAdvance");
 System.err.print("\tMaxAscent");
 System.err.print("\tMaxDescent");
 System.err.print("\tstringWidth");
 System.err.println();
 }

 private static int comparator(Font f1, Font f2) {

 int rval = f1.getFontName().compareTo(f2.getFontName());
 if (rval != 0) {
 return rval;
 }
 rval = f1.getFamily().compareTo(f2.getFamily());
 if (rval != 0) {
 return rval;
 }
 rval = f1.getName().compareTo(f2.getName());
 if (rval != 0) {
 return rval;
 }
 Integer i1 = f1.getStyle();
 Integer i2 = f1.getStyle();
 return i1.compareTo(i2);
 }

 private static void reportFontMetrics(Font baseFont) {
 BufferedImage img = new BufferedImage(100, 100, BufferedImage.
TYPE_INT_ARGB);
 Graphics2D g2d = img.createGraphics();
 for (int style : STYLES) {
 for (int size = 1; size <= 48; ++size) {
 reportFontMetrics(g2d, baseFont, style, size);
 }
 }
 }

 private static void reportFontMetrics(Graphics2D g2d, Font
baseFont, int style, int size) {
 Font font = new Font(baseFont.getName(), style, size);
 FontMetrics metrics = g2d.getFontMetrics(font);
 System.err.print(font.getName());
 System.err.print("\t" + font.getFamily());
 System.err.print("\t" + font.getStyle());
 System.err.print("\t" + size);
 System.err.print("\t" + metrics.getAscent());
 System.err.print("\t" + metrics.getDescent());
 System.err.print("\t" + metrics.getHeight());
 System.err.print("\t" + metrics.getLeading());
 System.err.print("\t" + metrics.getMaxAdvance());
 System.err.print("\t" + metrics.getMaxAscent());
 System.err.print("\t" + metrics.getMaxDescent());
 System.err.print("\t" + metrics.stringWidth(EXAMPLE_STRING));
 System.err.println();
 }
}

This code is independent of Capital and generates CSV output for the various FontMetrics methods with the following fields in each line:

Font,Style,Size,Height,Ascent,Descent,MaxAdvance,Leading,MaxAscent,MaxDescent

Date is generated for:

All fonts on the system, apart from Lucida fonts (which can be added to OpenJDK 11, but caused some difficulties in the comparison
here so have been left out for now): There are 460 such fonts on my Windows 7 laptop
Sizes 1-48
All four combinations of style: plain, bold, italic, bold_italic

Observations

The data from the program above was compared using a spreadsheet. The values were subtracted from the OracleJDK 8 OpenJDK 11
values and an analysis of these differences was done.

Most font combinations have different FontMetrics

The majority of combinations tested have some difference in at least one of the FontMetrics values in the data:

Row Labels Count of Has Diff?

0 25250

1 63262

Grand Total 88512

Generally the diffs are in the stringWidth method with affects the "horizontal" size of the rendered text, but there are also a number of diffs in
height related metrics which are the ones currently causing the most difficulty with our applications.

MaxAcscent/MaxDescent and Ascent/Descent are interchangeable in practice

Although the FontMetrics JavaDoc explains the difference between Ascent and MaxAscent there are no examples in the 88512
combinations with OpenJDK 11 where MaxAscent differs from Ascent. The same is true for Descent/MaxDescent.

There are probably fonts, locales or systems where these values differ but for the purposes of the remaining discussion here, these pairs of
methods are interchangeable.

Some font baselines appear to have moved up

Ascent diffs are nearly always equal to or than 0: Differences range from 0 to 12 (with only 2 of the combinations having a diff of 1)less

Row Labels Count of Ascent

-17 4

-16 12

-15 16

-14 12

-13 12

-12 12

-10 12

-9 12

-8 96

-7 168

-6 276

-5 928

-4 1718

-3 2860

-2 3604

-1 6013

The spreadsheet for this is very large and has not been attached to this page.

Data below is for all font sizes. Variation is smaller when we restrict the data to size 12 fonts (say).

This suggests that a number of the differences are proportional to the font sizes (although we haven't actually yet checked for
proportionality).

0 72755

1 2

Grand Total 88512

Descent diffs are always equal to or than 0:greater

Row Labels Count of Descent

0 73222

1 5855

2 3507

3 2694

4 1788

5 846

6 224

7 204

8 80

9 12

10 12

11 12

12 16

13 12

14 12

15 12

16 4

Grand Total 88512

Height is always (the same or at most plus or minus 1). Suggesting that the differences in Ascent and Descent nearly cancel out, i.similar
e. that the :baseline of the font has moved "up" a little

Row Labels Count of Height

-1 3949

0 81605

1 2958

Grand Total 88512

Leading is always :similar

Row Labels Count of Leading

-1 3061

0 82139

1 3312

Grand Total 88512

Ascent + is also virtually always :Descent similar

Row Labels Count of Ascent+Descent

-2 8

-1 3286

0 83158

1 2060

Grand Total 88512

Lack of variation in but much larger variation in both and adds weight to the theory that the font Ascent+Descent Ascent Descent baseline
has unexpectedly moved for some fonts.

Example Data

Here are the diffs in font metrics for the Calibri plain font at size 12:

Name Font Name Family Style Size Ascent Descent Height Leading

Calibri Calibri Calibri 0 12 -2 1 -1 0

Here are OracleJDK 8 and OpenJDK 11 font metrics for this font that result in the diffs above:

JDK Name Font Name Family Style Size Ascent Descent Height Leading

OracleJDK 8 Calibri Calibri Calibri 0 12 11 2 16 3

OpenJDK 11 Calibri Calibri Calibri 0 12 9 3 15 3

As in the general case, this shows a small change in the height and a larger change in the baseline position.

MaxAdvance is always only slightly smaller or is equal or greater

This means that spacing between characters will be the same, imperceptively smaller or varying degrees larger.

Here is the variation of differences across all combinations checked:

Row Labels Count of MaxAdvance

-1 27195

0 36994

1 878

2 1306

3 1037

4 1089

5 1231

6 1174

7 957

8 1311

9 1140

10 994

11 1290

12 1128

13 994

14 1279

15 1100

16 1028

17 1250

This could be a significant finding, pointing out where a FreeType (or T2K) bug is or how we might work around the changes...

18 1025

19 1005

20 885

21 596

22 418

23 358

24 242

25 112

26 113

27 106

28 76

29 71

30 66

31 22

32 19

33 19

34 4

Grand Total 88512

Any diffs are likely to be greater for very large font sizes. The size of the diffs here is not necessarily a cause for concern.

We have seen differences in font spacing in our tests but all have so far been acceptable.

	FontMetrics Differences between different Java Versions

