
Usage :

In the source below, MyClient uses DataMgr class' static
PERSON object (an instance of the appropriate
PersonDataMgr) to create a PersonData instance, "person".
The "person" instance is then modified using the methods
defined in it PersonData class. When we want to save the
"person" instance, we again call on DataMgr's PERSON
object to persist the object for us. The method for persisting
the object depending on which implementation of
PersonDataMgr we have specified in the .properties file on
the client.

public class MyClient {

PersonData person = DataMgr.PERSON.create();
person.setName("ejb-ster");
DataMgr.PERSON.save(person);

}

MyClient

PersonDataMgr_EJB PersonDataMgr_JDO PersonDataMgr_SOAP

+save(in personData : PersonData)
+create() : PersonData
+delete(in id : int)
+find() : java.util.Collection

<<interface>>
PersonDataMgr

+getName() : String
+setName(in name : String)

PersonData

+PERSON : PersonDataMgr

DataMgr

Note:

In this class's static { } initialization
(executed when class is loaded), it
creates a public, static instance of
appropriate PersonDataMgr (below).
Which PersonDataMgr (EJB, JDO,
SOAP, etc.) will be specified in a
.properties text file on client.uses

uses

Note:

Different implementations of the
PersonDataMgr interface (depending on
what type of system you're using).

Note:

The PersonData class is automatically generated by XDoclet
and although it is based on the PersonBean (xdoclet tagged-
up class), it contains no EJB-code and seemingly can be re-
used even if one is no longer using EJB. (Of course, any
changes needed to be made to it if one is no longer using
EJB/XDoclet would need to be done by hand or via a UML
tool.)

instantiates

Benefits :

If the EJB specification changes or we decide to use a different (non-EJB) architecture, we can minimize the client-side impact of those
changes by modifying only the particular implementation of the PersonDataMgr interface.

Objective :

To minimize the impact on client-side code if the EJB specification changes or if one decides to use a different (non-EJB) architecture.

2001.11.20, tek1

