Mark Rohrbaugh's formula, that I used to calculate the proton radius to a
higher degree of precision than QED or current measurements, results in a
slightly higher relative error with respect to the Hubble Surface
prediction, but that could be accounted for by the 11% tolerance in the
Hubble Surface calculation derived from the Hubble Radius, or the 2%
tolerance in the Hubble Volume calculation taken in ratio with the proton
volume calculated from the proton radius:

pradiusRohrbaugh=(8.41235641\[NegativeVeryThinSpace]\[NegativeVeryThinSpace]\[NegativeVeryThinSpace](35\[NegativeThinSpace]\[PlusMinus]\[NegativeThinSpace]26\[NegativeVeryThinSpace])*10^-16)m
pradiusRohrbaughPL=UnitConvert[pradiusRohrbaugh,"PlanckLength"]
pvolumeRohrbaugh=(4/3) Pi pradiusRohrbaughPL^3
h2pvolumeRohrbaugh=codata["HubbleVolume"]/pvolumeRohrbaugh
RelativeError[QuantityMagnitude[h2pvolumeRohrbaugh],QuantityMagnitude[hsurface]]
(8.41235641\[NegativeVeryThinSpace]\[NegativeVeryThinSpace]\[NegativeVeryThinSpace](35\[NegativeThinSpace]\[PlusMinus]\[NegativeThinSpace]26\[NegativeVeryThinSpace])*10^-16)m
(5.20484478\[NegativeVeryThinSpace]\[NegativeVeryThinSpace]\[NegativeVeryThinSpace](84\[NegativeThinSpace]\[PlusMinus]\[NegativeThinSpace]16\[NegativeVeryThinSpace])*10^19)Subscript[l,
P]
(5.90625180\[NegativeVeryThinSpace]\[NegativeVeryThinSpace]\[NegativeVeryThinSpace](6\[NegativeThinSpace]\[PlusMinus]\[NegativeThinSpace]5\[NegativeVeryThinSpace])*10^59)Subsuperscript[l,
P, 3]
= (1.025\[PlusMinus]0.019)*10^123
= -0.123\[PlusMinus]0.022



On Tue, Apr 2, 2024 at 9:16 AM James Bowery <[email protected]> wrote:

> I get it now:
>
> pradius = UnitConvert[codata["ProtonRMSChargeRadius"],"PlanckLength"]
> = (5.206\[PlusMinus]0.012)*10^19Subscript[l, P]
> pvolume=(4/3) Pi pradius^3
> = (5.91\[PlusMinus]0.04)*10^59Subsuperscript[l, P, 3]
> h2pvolume=codata["HubbleVolume"]/pvolume
> = (1.024\[PlusMinus]0.020)*10^123
> hsurface=UnitConvert[4 Pi codata["HubbleLength"]^2,"PlanckArea"]
> = (8.99\[PlusMinus]0.11)*10^122Subsuperscript[l, P, 2]
> RelativeError[QuantityMagnitude[h2pvolume],QuantityMagnitude[hsurface]]
> = -0.122\[PlusMinus]0.023
>
> As Dirac-style "Large Number Coincidences" go, a -12±2% relative error is
> quite remarkable since Dirac was intrigued by coincidences with orders of
> magnitude errors!
>
> However, get a load of this:
>
> CH4=2^(2^(2^(2^2-1)-1)-1)-1
> = 170141183460469231731687303715884105727
> protonAlphaG=(codata["PlanckMass"]/codata["ProtonMass"])^2
> = (1.69315\[PlusMinus]0.00004)*10^38
> RelativeError[protonAlphaG,CH4]
> = 0.004880\[PlusMinus]0.000022
>
> 0.5±0.002% relative error!
>
> Explain that.
>
>
> On Sun, Mar 31, 2024 at 9:45 PM Matt Mahoney <[email protected]>
> wrote:
>
>> On Sun, Mar 31, 2024, 9:46 PM James Bowery <[email protected]> wrote:
>>
>>> Proton radius is about 5.2e19 Plank Lengths
>>>
>>
>> The Hubble radius is 13.8e9 light-years = 8.09e60 Planck lengths. So
>> 3.77e123 protons could be packed inside this sphere with surface area
>> 8.22e122 Planck areas.
>>
>> The significance of the Planck area is it bounds the entropy within to
>> A/4 nats, or 2.95e122 bits. This makes a bit the size of 12.7 protons, or
>> about a carbon nucleus. https://en.wikipedia.org/wiki/Bekenstein_bound
>>
>> 12.7 is about 4 x pi. It is a remarkable coincidence to derive properties
>> of particles from only G, h, c, and the age of the universe.
>>
>>>
>>> *Artificial General Intelligence List <https://agi.topicbox.com/latest>*
>> / AGI / see discussions <https://agi.topicbox.com/groups/agi> +
>> participants <https://agi.topicbox.com/groups/agi/members> +
>> delivery options <https://agi.topicbox.com/groups/agi/subscription>
>> Permalink
>> <https://agi.topicbox.com/groups/agi/Teaac2c1a9c4f4ce3-Me023643f4fef1483cfab3ad6>
>>

------------------------------------------
Artificial General Intelligence List: AGI
Permalink: 
https://agi.topicbox.com/groups/agi/Teaac2c1a9c4f4ce3-M17fccdbdbf49f194fe6532ef
Delivery options: https://agi.topicbox.com/groups/agi/subscription

Reply via email to