The problem is NP-hard. I think that you only need to consider axis- parallel orientations of the rectangles (if this helps, you can try to prove it/disprove it). The problem has received a considerable amount of attention in the literature (it's usually denoted as optimal rectangle packing problem). People have used various search techniques to tackle the problem (e.g., genetic algorithms, backtracking). The problem is still NP-hard if the rectangles have a fixed orientation, but this additional restriction makes the problem easier to think about.
On May 23, 1:03 am, "Monu Rathour" <[EMAIL PROTECTED]> wrote: > I have Some rectangles of fixed size,and i have to arrange them such that > there in no overlap between them And area of Rectangle containing all of > smaller rectangle in minimum. > > Please suggest me some algorithm........ > > http://en.wikipedia.org/wiki/Minimum_bounding_rectangle --~--~---------~--~----~------------~-------~--~----~ You received this message because you are subscribed to the Google Groups "Algorithm Geeks" group. To post to this group, send email to [email protected] To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/algogeeks -~----------~----~----~----~------~----~------~--~---
