(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z) is an ordered list of positive integers Let magic(value) denote the number of such ordered lists that exist such that gcd(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)=1 AND max(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)=value Find the divisors of 111111111111111111(18 -digits) . For each of the divisors D , compute magic(D) . Find the last 8 digits of the sum of all the magic(D) computed .
-- You received this message because you are subscribed to the Google Groups "Algorithm Geeks" group. To post to this group, send email to algoge...@googlegroups.com. To unsubscribe from this group, send email to algogeeks+unsubscr...@googlegroups.com. For more options, visit this group at http://groups.google.com/group/algogeeks?hl=en.