(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z) is an ordered
list of positive integers
Let magic(value) denote the number of such ordered lists that exist
such that gcd(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)=1
AND max(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z)=value
Find the divisors of 111111111111111111(18 -digits) . For each of the
divisors D , compute magic(D) . Find the last 8 digits of the sum of
all the magic(D) computed .

-- 
You received this message because you are subscribed to the Google Groups 
"Algorithm Geeks" group.
To post to this group, send email to algoge...@googlegroups.com.
To unsubscribe from this group, send email to 
algogeeks+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/algogeeks?hl=en.

Reply via email to