Ant2 File/FileSet/Culler Proposal
By: David Rees (dave@ubigsoft.com)

1 Overview

The following gives a proposa for how Files and FileSets could be handled in Ant.
Generdly, it isintended to support “Files’ and sets of these filesfrom dl waks of life
including directory, ftp, http and Visua Age packages/classes (which make a good test
cae). It dso explain the use of cullersfor filtering sets of files.

Not described yet is Mapper functiondity which should be in the find design.

2 Ant2 Design Assumptions
This proposd depends on afew features being available in Ant2. | also fed they are good
ideasin generd.

2.1 Element Sub-Types

Ant2 needs to provide support for the transparent use of a sub-type where atypeis
expected. The methods of adement should not have to be extended just to support new
ub-types.

Thisis needed for this design to support addition of new AntFiles and other items without
having to change the many dements that use them.

For purposes of the below design | will assumethet if aelement accepts A (addA() or
seta()) it will accept subclasses of A.

2.2 Element Creators

Ant2 needs to extend the framework of IntrospectionHel per to support creators for types.
In general, a creator is a static method or a Factory class that is used to creste the instance
of atype. Thisalows the actualy class created to be a sub-type of the classthat the

I ntrospectionHe per expects. Note that constructors could be still be used as afallback if
atype does not support the creator API.

Thisis needed for this proposa to support the autometic creation of an AntFile based on
the string passed.

| will assume that if aeement class A has the gatic method creste(String) that
IntrospectionHe per will cdl it with the attribute’ s string.

2.3 TypeRegistry
Ant2 needs to support aregistry of types and elements. This registry needs to support
inheritance.

Thisis needed for this proposa to support the automatic creation of a AntFile based on
the string passed.

| will assume that atype is somehow aware of his sub-types.

2.4 Finalization/Handle Registry
Ant2 needs to support aregistry for handles that need to be findized at the end of atask
execution.

This needed for this proposal to close FTP, File, HTTP and other handles that are opened
for AntFles.

3 Ant2Design Possibilities

4

There are afew Ant2 design possibilities that | think could go ether way. Depending on
their inclusion this design could be atered as described.

4.1 Auto-Inclusion of Sub-Elements

Some Antl types include their sub-eement and support the sub-elements attributes and
sub-dementsin their own AP (FileSet in Copy). Personally | would rather force people
to do extratyping, but if we did want to support this then | would suggest we support
auto-incluson where adement can indicate it auto-includes a sub-dements type and then
Helper would do all the work. As a possible example includeType() instead of
add/createType.

If we did support this then backward compatibility would be easier for some of the design
below. Specificaly PatternCuller could automatically be included into FileSet so that you
could till specify indudes/excludes et thet leve.

4.2 Named Sub-Elementsand Attribute/Sub-Element Equivalence
Generdly it seemsthat in many cases an atribute and a sub-eement are used for the
samething. Also, it is possible for the same type to be included for different “types’. The
problem isthat thereis no way (that | know) to indicate the “name”’ of included €ement.
For ingtance, in the following contrived example here is no way to indicate

<CopyAndDel et e>
<FileSet ... /> “files to copy”
<FileSet ... /> “files to delete”
</ CopyAndDel et e>

| think that we need to support this somehow, at least by convention. Perhgps by using an
“parentAttribute’ attribute.

If there are named sub-dements, then in certain places in this design an attribute could be
interchanged with a sub-eement. Thiswould dlow plugging in of new types (snce
attributes don't have the eement name to indicate what type they are). Also, for the

BasicFileSet the source file could be listed as sub-eement (where right now it has to be
an dtribute to not confuse it with other sub-eements).

5 AntFile

51 Overview

An AntFile represents a“file’. Thisfile could be located on afile system, ftp Site, web
dte or perhapsin azp file. Specific sub-types handle the differences between file
sources. New types can be added by devel opers to support new types of sources.

Likeajavaio.File AntFile can dso act asa“directory” which contains additiona
AntFiles. This can be interesting in cases where a given file can be both (Zip/Archives).

5.2 XML Usage

AntFiles are defined from strings. They are defined using an URL syntax with afew
added extensions for additiond “schemes’ (the part before the colon). In addition, no
schemesis assumed to be alocdl file. As examples:

“c:\tenmp\”

“ftp://ftp.ubiqgsoft.comfile.txt”
“ftp://usernane@assword: ftp. ubigsoft.conm secretFile”
“http://httpd. apache.org/rel ated _projects. htm”

Zip and various archive formats are supported as well. For these a source archive needs
be defined in place of the server portion of the URL. As examples.
“zip:<c:\tenp\file.zip>
“zip:<ftp://ftp.ubigsoft.com zipfile> META-1NF”

In the case of archivesthey can even been nested as shown below. Notice that if you just
ignore the angled brackets the path reads “normally”.

“jar:<zip:<c:\tenp\file.zip>/ejb.jar>/ Miin.java”

For specific uses AntFiles can aso be defined as dements as follows:
<AntFile name="c:\files\file.txt” />

Specific schemes may support additiond attributes for their type (e.g. retries or PASV for
FTP). | am not sure how to support this when an AntFile is defined as an attribute.

Note that different schemes may only support a subset of the AntFile functiondity (this
will be described in a chart somewhere once coding begins). In the case where
unsupported functiondlity is used a BuildException will be raised.

5.3 JavaUsage

The AntFile APl isvery smilar to javaio.Fle Onedifferenceisin file crestion which is
done using dtatic creator methods rather than constructors so the actua returned object
may be a sub-type of AntFile.

The methods support are listed below with basic descriptions of their functiondlity.
Creation is described after that.

As described above, if functiondity is not supported a BuildExcpetion will be raised
(specificdly a AntFileFunctionNotSupportedException).

5.3.1 Instance Methods supported
Arguments are only listed if they different or important for the description.

canRead(), canWite(), exists(),length(), |astModified(),isH dden()
These return the attribute as it applies for their implementation.

get Nane()
Will return the basic (lesf) name of the AntFile.

getPath(), toString(), getParent()
These will return the appropriate URL string.

get ParentFil e()
Returns the parent AntFile or null if thisisthe top of the scheme.

getl nput Stream(), getQutput Strean(bool ean append), getJavaFil e()

These methods are used to access or modify the actua File. The append flag for
getOutputStream() can be st to true if you want to gppend to that file. getdavaFile() can
be used to extract an actud javaio.File for those implementations where it is supported.
Generdly thisis how copying and moving will be done (and is done now). Filters will be
gpplied as norma on these streams.

renameTo(), createNewFile(), delete(), nkdir(), nkdirs()
These methods essentialy do what they describe for their implementation (if it supports
it).

conpareTo(AntFile), equal s(), hashCode()
These are al done based on the getPath() result.

set Last Modi fied(), setReadOnly()
These will make the required change (if possible) for the indicated implementation.

isDirectory(), isFile()

This gets alittle tricky. Generdly | lean towards zip files being creatable as directories,
but when accessed when navigating/scanning they are treated asfiles. Thisdlows them
to be used in a AntFile path, but they will be treated as directories when descending.

The other option isto make it an option, which | like but am not where sure to defineit.

list(), listFiles(), getChild(String)
getChild() is used to creste a child AntFile of the gppropriate type for agiven name. This
method is used by the creator methods (see below).

setPath(), setPath(AntFile, String), setPath(String, String)

setPeath will be usad to dlow reusing an AntFile instance when doing things like
scanning. Noteif thisis supported then setters would need to copy their AntFiles when
Sting.

iterator(), iterator(ScanFilter)

This returns an Iterator walks the tree of files thisfile represents. In the case of anor+
directory it will Smply iterate once (itsdlf). For most schemesthiswill Smply bea
directory based search. The Iterator constructor will also support accepting a* ScanFilter”

that it will usesto prune the search as follows (for efficiency).
bool ean shoul dScanDi rectory(AntFil e)

5.3.2 ClassMethods Supported (Creation)

Cregtion of AntFlesis done through a set of static crestion methods on AntFile. These
methods have smilar sgnatures to the java.io.File congructors, but are methods so they
can return the correct subclass instance as required. It is quite likely these will end up on
aFactory class rather than being AntFile static methods.

create(String)

This method creates the correct ingance of AntFile based on the scheme indicated in the
String (as describe above).

create(AntFile, String), create(String, String)

Crestes an ingtance of AntFile relative to the passed AntFile. The scheme will be the
same as the passed AntFile. The second method acts as if an AntFileis created based on
the firg String and then passed to the first method.

createFromArchi ve(AntFile archiveFile, String schenme, String
relati vePat h)

Only isvdid for archive schemes. Creates an AntFile of the indicated scheme on the
passed archiveFile.

5.3.3 FileMethods not supported

get Absol uteFil e(), getCanonical File(), getAbsol utePath(),

get Canoni cal Path(), isAbsolute(), toURL()

| wonder if these can be supported because AntFile supports aricher set of “directories’.
They possibly could be supported if there isred need.

5.34 Implementation specific methods

Specific implementations can support additiona methods which can be accessed by
casting down to that type. Obvioudy a cast exception will beraised if the AntFileis not
that sub-type. Maybe getJavakile() should go here?

5.3.5 Fileinterface

As a convenience, the above AP will actudly be defined on the interface Filein the
org.gpache.ant package which is sub-typed by AntFle. Thisalows easy trangtion of a
classto usng an AntFile by smply changing the import statement. However, since that
can cause confusion it is aso possible to smply use AntFle and rename as gppropriate.

5.3.6 Contexts

There aso needs to be some way to setup additiond characteristics for a given scheme.
Things like retries and such. My thinking isit could be ether additional Stuff in the
Context or attributes when an AntFile is defined as aement.

54 Implementation

Thisisjust abasic overview of the implementation desgn. Much of it can be derived
from the APIs describe above. AntFiles are implemented as classes that implement the
AntFile interface. Specific implementations are responsible for supporting the methods
they can and raising an BuildException for those they can’t. Notes on the specific
implementations are below.

54.1 Creation

When the String AntFile creators are cdled they will firgt gtrip off the scheme. They will
then look through the Ant2 type regigtry for dl AntFile sub-types and ask each oneiif it
supports the indicated scheme. The first sub-type found that supports the scheme hasits
creator called with String and the result isturned (if the Ant2 registry supports ordering
then this can be used to indicate which typeis used).

All other creator methods are passed to the type of the passed AntFile.

54.2 File Scheme

The basic file scheme will smply wrap File instances. The AntFile object will have aFile
ingtance and will pass al method cdlsto it. Converting results back to AntFiles as
needed. The creation methods will do the same.

54.3 FTP Scheme
My current thoughts are to Ssmply use the ORO Net Components classes that are aready
used for the FTP component. AntFile objects will wrap FTPFile objects.

In addition, when afil€ s attributes are first accessed it will register aFTPClient in the
Ant2 handle regigtry. This FTPClient will be reused across dl FTPFile objects for this
server.

Streams will be supported as expected.

54.4 HTTP Scheme

This method will wrap the Java URL Connection and URL classes. Hopefully there could
be some caching to reduce connections.

Streams will be supported as expected.

5.4.5 Archive Schemes

Archive schemes represent directory structure insgde afile (eg. Zip). Generdly these are
internally created by first getting access to the archive file and then opening a read/write
dreamoniit.

Initidly the modification functiondity will be pretty limited (no deleting or replacing
files). Its possble to creste a new archive with the changes and then moving it over the
origina one, but | haven't decided how much | like this.

For Archivesislikdy that a directory based scan will not work, so they will implement a
iterator that just iterates through the archive. It would probably ignore the ScanFilter.

6 FileSets

A file st represents agroup of files. This design extends this concept to include new
types of FileSets. The origind Antl FleSet functiondity is described as a CullingFileSet
in thisdesgn.

6.1 XML API
FileSet itsalf does not have an XML API other than it supports references. Insteed, its
subtypes have APIs based on their type.

6.1.1 CullingFileSet

CullingFileSet iswhat was called aFileSet in Antl. The main changes are that it now
uses Cullersfor selecting it files rather than PatternSets. PatternSets are now used within
PatternCuller (described below).

A CullingFileSet takes adir atribute which is an AntFile string. This attribute can dso be
defined using an “named eement” as described above.

In addition, CullingFileSet takes a set of Cullersthat will be gpplied to the filesin that
directory to determine if they should be included. See Cullers below for more information
on Cullers.

CullingHleSets are not ordered. The order in which they return their results is scheme
dependent.

See Cullers below for examples.

6.1.2 BasicFileSet

A BasicFileSet smply represents an ordered set of files. Files can be defined in the
atribute “includes’ as acomma separated list of AntFiles. They can dso be added as sub-
eements. In addition, the aitribute “includesfile’ can be used indicate afile that lissfiles

to be included.

BasicFileSet also supports a creator that takes a String. Thisalowsit to be used asan
atribute in aelement if that element indicates it accepts BasicFileSets. The creator will
treat the String as if were the “includes’ eement.

My expectation is that this FileSet can/will replace Path.

Examples.
<Basi cFil eSet includes="c:\temp\file.txt,
ftp://ftp.ubigsoft.comfile.txt” />
<Basi cFi | eSet >

<AntFile nanme="c:\tenp\file.txt>

<AntFile name”ftp://ftp.ubiqgsoft.comfile.txt” />
</ Basi cFi | eSet >

6.1.3 FileSetSet
A FileSetSet smply groups a set of FileSets together. It supports FileSet sub-eemerts.
Ordering is preserved to the degree that its sub-eements support it.

6.2 JavaAPI
FileSet will support avery smple API. Note that while it returns an array, the ordering is
only deterministic for “ordered” FileSets as defined above.

i ncluded(), fileslncluded(), dirslncluded()

Simply returnsthe indicated items as an array. The last two methods use the isDirectory()
to select which ones are used.

iterator()

Returns an java.util.lterator that can be used to get the files selected one a atime.
Potentialy each request may result in processing to determine the next file.

6.3 Implementation
The FileSet interface/class will support the AP as described above.

6.3.1 CullingFileSet

A CullingFileSet smply getstheiterator of itsdir and iterates over it. It gppliesitscullers
asit goes and returns only those that are selected. It can dso act as a ScanFilter for
pruning the search.

The included() methods smply iterate through al the results and build an array before
returning it.

6.3.2 BasicFileSet
Smply iterates through itslist of files

6.3.3 FileSetSet
Iterates through each of its contained FileSetsin turn.

7 Cullers
7.1 Usage

Cullers determine the files returned for a CullingFileSet. Specific culler types support
selecting files based on their attributes or perhaps contents.

An example says it bes, the following sdlects dl filesthat end in ".txt" and are read only.
<copy toDir="\tmp\toDir">
<CullingFileSet dir="tmp\fromDir">
<include name="* .txt" />
<FileAttributeCuller canWrite="no" />
</CullingFileSet>
</copy>

For some schemesit is possible that certain culler attributes may not be vaid. In these
cases a BuildException israised as described under AntFile.

7.2 Culler Types
Note that it easy to add additiona cullers. See "developing cullers’ for more information.

7.2.1 PatternCuller
A PatternCuller contains a set of PatternSet elements. It selectsfiles based on if they

support its patterns.

In addition, it supports pruning the search based on if a given directory could ever contain
filesthat would metch its patterns.

7.2.2 FileAttributeCuller
Supports salecting files based on thelr attributes. The default for dl attributes is to ignore
that attribute so ablank FileAttributeCuller will sdect dl files.

7.2.2.1.1 Basic Attributes
Each attribute corresponds to the smilar method on the Java File class.

canRead
truefyes, fase/no, *ignore

canWite
truelyes, fdse/no, *ignore

exi sts
truefyes, fase/no, *ignore

fileDir
file, dir, *ignore

7.2.2.1.2 Date Attributes

For date attributes any String that can be read by Java Date or "ignore” is supported. This
includes minutes, seconds and milliseconds.

dat eEqual s
Sdectsfileif its date is the same to the millisecond as the indicated date

dat eNot Equal s
Sdectsfileif its date is the different (to the millisecond) from the indicated date

dat eAfter

SHectsfileif itsdate is after the indicated date

dat eBefore
SHectsfileif its date is before the indicated date

7.2.2.1.3 Length Attributes

For length attributes, any long that can be read by JavaLong or "ignore" is supported.
Thelengthisin bytes.

| engt hEqual
Sdectsfileif itslength equas the indicated length.

| engt hNot Equal
Sdectsfileif itslength does not equd the indicated length.

| engt hLessThan
SHectsfileif itslength isless than the indicated length.

| engt hGr eat er Than
Sdectsfileif itslength is greater than the indicated length.

7.2.2.1.4 Examples

Sdect only files

<fileset dir="${fromdir}" >
<fileattributeculler fileDir="file" />

</fil eset>

Sdect files created Snce the gart of the millennium:
<fileset dir="\tnp\fronDir">
<i nclude name="*.txt" />
<FileAttributeCuller dateAfter="1/1/2001" />
</fil eset>

Select non-empty files
<fileset dir="\tnp\fronDir">
<i ncl ude name="*.txt" />
<FileAttributeCuller |engthNotEqual="0" />
</fil eset>

7.2.2.2 FileCompareCuller

Supports selecting files rdative to another directory. The same st of attributes as
FileAttributeCuller are supported except that they are gpplied to the file in the same
relative position in compare directory. In addition, the vaue "culeg" can be used for
date/length attributes to compare the file to the file being sdected.

7.2.2.2.1 Examples

Copies only those files that do not exigt in the toDir:
<copy toDir="%{to.dir}">
<fileset dir="${fromdir}">
<fileconparecull er conpareDir="${to.dir}" exists="no" />
</[fileset>
</ copy>

Makes a clone of the fromDir in the toDir. It first deletes those filesthat do no exist in the
fromDir. Then copies only those files that don't exist or have changed.
<nkdir dir="${to.dir}" />
<del et e>
<fileset dir="${to.dir}">
<fileconparecul l er conmpareDir="${fromdir}" exists="no" />
</fileset>
</ del et e>
<copy toDir="${to.dir}">
<fileset dir="${fromdir}">
<cul l erset logic="or">
<fileconparecull er conpareDir="${to.dir}" exists="no" />
<fil econpareculler
compareDi r="${to.dir}"
dat eNot Equal ="cul | ee" />
</cull erset >
</fileset>
</ copy>

7.2.2.3 Culler Set

A collection of Cullersthat isadso aCuller itsdf (they can be nested). CullerSet supports
amplelogic for how to combine the results of its contained cullers. Cullers are tested in
the order they are listed. Short circuiting is used so some cullers may not be cdled for a
given file (eg. with "and" logic the fira fase nested culler will result in the CullerSet
returning false immediatdly).

7.2.2.3.1 Attributes

| ogic
or*, and, xor
Used to indicate what logic is used to combine my nested cullers.

not

truelyes, fase/no*
If "truelyes’ the CullerSet'svaueis reversed.

7.2.2.3.2 * Examples

Sdects dl directories and only writablefiles:
<cul l erset logic="or" >
<fileattributeculler fileDir="dir" />
<fileattributeculler fileDir="file" canWite="yes" />
</cull erset>

7.2.2.4 Possible Cullers

ContaingHileCuller which will sdlect files based on their contents using a RegEXxp.

a ByteCompareCuller that compares actua conterts.

7.3 Developing Cullers

Additiona FileCullers can be added easily by creating a class that implements the Culler
AP of shouldCull(AntFile).

