jim         99/06/20 16:49:39

  Modified:    mpm/src  Configuration.mpm Configure
               mpm/src/main Makefile.tmpl
  Added:       mpm/src/modules/mpm Makefile.tmpl mpm_prefork.c
  Removed:     mpm/src/main mpm_prefork.c
  Log:
  First cut at implementing the MPM methods as modules. Uses a new
  Configure Rule, MPM_METHOD to determine the actual method. Configure
  then automagically prepends the mpm_ on front and adds the correct
  subdir under modules. Right now, only (mpm_)prefork is enabled. Since
  this is implemented as modules, all the module Config tricks work.
  
  Revision  Changes    Path
  1.8       +1 -0      apache-2.0/mpm/src/Configuration.mpm
  
  Index: Configuration.mpm
  ===================================================================
  RCS file: /export/home/cvs/apache-2.0/mpm/src/Configuration.mpm,v
  retrieving revision 1.7
  retrieving revision 1.8
  diff -u -r1.7 -r1.8
  --- Configuration.mpm 1999/06/20 21:12:47     1.7
  +++ Configuration.mpm 1999/06/20 23:49:27     1.8
  @@ -21,6 +21,7 @@
   Rule PARANOID=no
   Rule EXPAT=no
   Rule WANTHSREGEX=default
  +Rule MPM_METHOD=default
   # AddModule modules/experimental/mod_mmap_static.o
   AddModule modules/standard/mod_env.o
   AddModule modules/standard/mod_log_config.o
  
  
  
  1.6       +10 -5     apache-2.0/mpm/src/Configure
  
  Index: Configure
  ===================================================================
  RCS file: /export/home/cvs/apache-2.0/mpm/src/Configure,v
  retrieving revision 1.5
  retrieving revision 1.6
  diff -u -r1.5 -r1.6
  --- Configure 1999/06/20 23:14:17     1.5
  +++ Configure 1999/06/20 23:49:28     1.6
  @@ -1478,6 +1478,11 @@
   
   echo " + adding selected modules"
   
  +##
  +# First, add the shadow MPM method module
  +##
  +echo "AddModule modules/mpm/mpm_$RULE_MPM_METHOD.o" >> $tmpfile
  +
   MODFILES=`awk <$tmpfile '($1 == "AddModule" || $1 == "SharedModule") { 
printf "%s ", $2 }'`
   MODDIRS=`awk < $tmpfile '
        ($1 == "Module" && $3 ~ /^modules\//) {
  @@ -1704,15 +1709,15 @@
   ## TODO: a default selected depending on the platform
   ## TODO: there should be an mpm/foo/ hierarchy for the MPM
   
  -$CAT > $awkfile <<'EOFM'
  +$CAT > $awkfile <<EOFM
       BEGIN {
        modules[n++] = "core"
        pmodules[pn++] = "core"
  -     modules[n++] = "mpm_prefork"
  -     pmodules[pn++] = "mpm_prefork"
  +     modules[n++] = "mpm_$RULE_MPM_METHOD"
  +     pmodules[pn++] = "mpm_$RULE_MPM_METHOD"
       } 
  -    /^Module/ { modules[n++] = $2 ; pmodules[pn++] = $2 } 
  -    /^%Module/ { pmodules[pn++] = $2 } 
  +    /^Module/ { modules[n++] = \$2 ; pmodules[pn++] = \$2 } 
  +    /^%Module/ { pmodules[pn++] = \$2 } 
       END {
        print "/*"
        print " * modules.c --- automatically generated by Apache"
  
  
  
  1.5       +1 -10     apache-2.0/mpm/src/main/Makefile.tmpl
  
  Index: Makefile.tmpl
  ===================================================================
  RCS file: /export/home/cvs/apache-2.0/mpm/src/main/Makefile.tmpl,v
  retrieving revision 1.4
  retrieving revision 1.5
  diff -u -r1.4 -r1.5
  --- Makefile.tmpl     1999/06/20 23:14:31     1.4
  +++ Makefile.tmpl     1999/06/20 23:49:32     1.5
  @@ -11,7 +11,7 @@
         http_config.o http_core.o http_log.o \
         http_main.o http_protocol.o http_request.o http_vhost.o \
         util.o util_date.o util_script.o util_uri.o util_md5.o \
  -      rfc1413.o mpm_prefork.o http_connection.o iol_unix.o
  +      rfc1413.o http_connection.o iol_unix.o
   
   .c.o:
        $(CC) -c $(INCLUDES) $(CFLAGS) $<
  @@ -148,15 +148,6 @@
    $(OSDIR)/os-inline.c $(INCDIR)/ap_ctype.h $(INCDIR)/hsregex.h \
    $(INCDIR)/alloc.h $(INCDIR)/buff.h $(INCDIR)/ap_iol.h \
    $(INCDIR)/ap.h $(INCDIR)/apr.h $(INCDIR)/util_uri.h
  -mpm_prefork.o: mpm_prefork.c $(INCDIR)/httpd.h $(INCDIR)/ap_config.h \
  - $(INCDIR)/ap_mmn.h $(INCDIR)/ap_config_auto.h $(OSDIR)/os.h \
  - $(OSDIR)/os-inline.c $(INCDIR)/ap_ctype.h $(INCDIR)/hsregex.h \
  - $(INCDIR)/alloc.h $(INCDIR)/buff.h $(INCDIR)/ap_iol.h \
  - $(INCDIR)/ap.h $(INCDIR)/apr.h $(INCDIR)/util_uri.h \
  - $(INCDIR)/http_main.h $(INCDIR)/http_log.h $(INCDIR)/http_config.h \
  - $(INCDIR)/http_core.h $(INCDIR)/http_connection.h \
  - $(INCDIR)/scoreboard_prefork.h $(INCDIR)/ap_mpm.h \
  - $(OSDIR)/unixd.h
   rfc1413.o: rfc1413.c $(INCDIR)/httpd.h $(INCDIR)/ap_config.h \
    $(INCDIR)/ap_mmn.h $(INCDIR)/ap_config_auto.h $(OSDIR)/os.h \
    $(OSDIR)/os-inline.c $(INCDIR)/ap_ctype.h $(INCDIR)/hsregex.h \
  
  
  
  1.1                  apache-2.0/mpm/src/modules/mpm/Makefile.tmpl
  
  Index: Makefile.tmpl
  ===================================================================
  
  #Dependencies
  
  $(OBJS) $(OBJS_PIC): Makefile
  
  # DO NOT REMOVE
  mpm_prefork.o: mpm_prefork.c $(INCDIR)/httpd.h $(INCDIR)/ap_config.h \
   $(INCDIR)/ap_mmn.h $(INCDIR)/ap_config_auto.h $(OSDIR)/os.h \
   $(OSDIR)/os-inline.c $(INCDIR)/ap_ctype.h $(INCDIR)/hsregex.h \
   $(INCDIR)/alloc.h $(INCDIR)/buff.h $(INCDIR)/ap_iol.h \
   $(INCDIR)/ap.h $(INCDIR)/apr.h $(INCDIR)/util_uri.h \
   $(INCDIR)/http_main.h $(INCDIR)/http_log.h $(INCDIR)/http_config.h \
   $(INCDIR)/http_core.h $(INCDIR)/http_connection.h \
   $(INCDIR)/scoreboard_prefork.h $(INCDIR)/ap_mpm.h \
   $(OSDIR)/unixd.h
  
  
  
  1.1                  apache-2.0/mpm/src/modules/mpm/mpm_prefork.c
  
  Index: mpm_prefork.c
  ===================================================================
  /* ====================================================================
   * Copyright (c) 1995-1999 The Apache Group.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions
   * are met:
   *
   * 1. Redistributions of source code must retain the above copyright
   *    notice, this list of conditions and the following disclaimer. 
   *
   * 2. Redistributions in binary form must reproduce the above copyright
   *    notice, this list of conditions and the following disclaimer in
   *    the documentation and/or other materials provided with the
   *    distribution.
   *
   * 3. All advertising materials mentioning features or use of this
   *    software must display the following acknowledgment:
   *    "This product includes software developed by the Apache Group
   *    for use in the Apache HTTP server project (http://www.apache.org/)."
   *
   * 4. The names "Apache Server" and "Apache Group" must not be used to
   *    endorse or promote products derived from this software without
   *    prior written permission. For written permission, please contact
   *    [EMAIL PROTECTED]
   *
   * 5. Products derived from this software may not be called "Apache"
   *    nor may "Apache" appear in their names without prior written
   *    permission of the Apache Group.
   *
   * 6. Redistributions of any form whatsoever must retain the following
   *    acknowledgment:
   *    "This product includes software developed by the Apache Group
   *    for use in the Apache HTTP server project (http://www.apache.org/)."
   *
   * THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY
   * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE APACHE GROUP OR
   * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
   * OF THE POSSIBILITY OF SUCH DAMAGE.
   * ====================================================================
   *
   * This software consists of voluntary contributions made by many
   * individuals on behalf of the Apache Group and was originally based
   * on public domain software written at the National Center for
   * Supercomputing Applications, University of Illinois, Urbana-Champaign.
   * For more information on the Apache Group and the Apache HTTP server
   * project, please see <http://www.apache.org/>.
   *
   */
  
  /*
   * httpd.c: simple http daemon for answering WWW file requests
   *
   * 
   * 03-21-93  Rob McCool wrote original code (up to NCSA HTTPd 1.3)
   * 
   * 03-06-95  blong
   *  changed server number for child-alone processes to 0 and changed name
   *   of processes
   *
   * 03-10-95  blong
   *      Added numerous speed hacks proposed by Robert S. Thau ([EMAIL 
PROTECTED]) 
   *      including set group before fork, and call gettime before to fork
   *      to set up libraries.
   *
   * 04-14-95  rst / rh
   *      Brandon's code snarfed from NCSA 1.4, but tinkered to work with the
   *      Apache server, and also to have child processes do accept() directly.
   *
   * April-July '95 rst
   *      Extensive rework for Apache.
   */
  
  /* TODO: this is a cobbled together prefork MPM example... it should mostly
   * TODO: behave like apache-1.3... here's a short list of things I think
   * TODO: need cleaning up still:
   * TODO: - use ralf's mm stuff for the shared mem and mutexes
   * TODO: - abstract the Listen stuff, it's going to be common with other MPM
   * TODO: - clean up scoreboard stuff when we figure out how to do it in 2.0
   */
  
  #define CORE_PRIVATE
  
  #include "httpd.h"
  #include "http_main.h"
  #include "http_log.h"
  #include "http_config.h"
  #include "http_core.h"                /* for get_remote_host */
  #include "http_connection.h"
  #include "scoreboard_prefork.h"
  #include "ap_mpm.h"
  #include "unixd.h"
  #ifdef USE_SHMGET_SCOREBOARD
  #include <sys/types.h>
  #include <sys/ipc.h>
  #include <sys/shm.h>
  #endif
  
  #ifdef HAVE_BSTRING_H
  #include <bstring.h>          /* for IRIX, FD_SET calls bzero() */
  #endif
  
  /* config globals */
  
  static int ap_max_requests_per_child=0;
  static char *ap_pid_fname=NULL;
  static char *ap_scoreboard_fname=NULL;
  static char *ap_lock_fname;
  static char *ap_server_argv0=NULL;
  static struct in_addr ap_bind_address;
  static int ap_daemons_to_start=0;
  static int ap_daemons_min_free=0;
  static int ap_daemons_max_free=0;
  static int ap_daemons_limit=0;
  static time_t ap_restart_time=0;
  static int ap_listenbacklog;
  static int ap_extended_status = 0;
  
  /*
   * The max child slot ever assigned, preserved across restarts.  Necessary
   * to deal with MaxClients changes across SIGUSR1 restarts.  We use this
   * value to optimize routines that have to scan the entire scoreboard.
   */
  static int max_daemons_limit = -1;
  
  /*
   * During config time, listeners is treated as a NULL-terminated list.
   * child_main previously would start at the beginning of the list each time
   * through the loop, so a socket early on in the list could easily starve out
   * sockets later on in the list.  The solution is to start at the listener
   * after the last one processed.  But to do that fast/easily in child_main 
it's
   * way more convenient for listeners to be a ring that loops back on itself.
   * The routine setup_listeners() is called after config time to both open up
   * the sockets and to turn the NULL-terminated list into a ring that loops 
back
   * on itself.
   *
   * head_listener is used by each child to keep track of what they consider
   * to be the "start" of the ring.  It is also set by make_child to ensure
   * that new children also don't starve any sockets.
   *
   * Note that listeners != NULL is ensured by read_config().
   */
  static listen_rec *ap_listeners;
  static listen_rec *head_listener;
  
  static char ap_coredump_dir[MAX_STRING_LEN];
  
  /* *Non*-shared http_main globals... */
  
  static server_rec *server_conf;
  static int sd;
  static fd_set listenfds;
  static int listenmaxfd;
  
  /* one_process --- debugging mode variable; can be set from the command line
   * with the -X flag.  If set, this gets you the child_main loop running
   * in the process which originally started up (no detach, no make_child),
   * which is a pretty nice debugging environment.  (You'll get a SIGHUP
   * early in standalone_main; just continue through.  This is the server
   * trying to kill off any child processes which it might have lying
   * around --- Apache doesn't keep track of their pids, it just sends
   * SIGHUP to the process group, ignoring it in the root process.
   * Continue through and you'll be fine.).
   */
  
  static int one_process = 0;
  
  #ifdef HAS_OTHER_CHILD
  /* used to maintain list of children which aren't part of the scoreboard */
  typedef struct other_child_rec other_child_rec;
  struct other_child_rec {
      other_child_rec *next;
      int pid;
      void (*maintenance) (int, void *, ap_wait_t);
      void *data;
      int write_fd;
  };
  static other_child_rec *other_children;
  #endif
  
  static pool *pconf;           /* Pool for config stuff */
  static pool *pchild;          /* Pool for httpd child stuff */
  
  static int my_pid;    /* it seems silly to call getpid all the time */
  #ifndef MULTITHREAD
  static int my_child_num;
  #endif
  
  #ifdef TPF
  int tpf_child = 0;
  char tpf_server_name[INETD_SERVNAME_LENGTH+1];
  #endif /* TPF */
  
  static scoreboard *ap_scoreboard_image = NULL;
  
  static int volatile exit_after_unblock = 0;
  
  #ifdef GPROF
  /* 
   * change directory for gprof to plop the gmon.out file
   * configure in httpd.conf:
   * GprofDir logs/   -> $ServerRoot/logs/gmon.out
   * GprofDir logs/%  -> $ServerRoot/logs/gprof.$pid/gmon.out
   */
  static void chdir_for_gprof(void)
  {
      core_server_config *sconf = 
        ap_get_module_config(server_conf->module_config, &core_module);    
      char *dir = sconf->gprof_dir;
  
      if(dir) {
        char buf[512];
        int len = strlen(sconf->gprof_dir) - 1;
        if(*(dir + len) == '%') {
            dir[len] = '\0';
            ap_snprintf(buf, sizeof(buf), "%sgprof.%d", dir, (int)getpid());
        } 
        dir = ap_server_root_relative(pconf, buf[0] ? buf : dir);
        if(mkdir(dir, 0755) < 0 && errno != EEXIST) {
            ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
                         "gprof: error creating directory %s", dir);
        }
      }
      else {
        dir = ap_server_root_relative(pconf, "logs");
      }
  
      chdir(dir);
  }
  #else
  #define chdir_for_gprof()
  #endif
  
  /* a clean exit from a child with proper cleanup */
  static void clean_child_exit(int code) __attribute__ ((noreturn));
  static void clean_child_exit(int code)
  {
      if (pchild) {
        ap_destroy_pool(pchild);
      }
      chdir_for_gprof();
      exit(code);
  }
  
  #if defined(USE_FCNTL_SERIALIZED_ACCEPT) || 
defined(USE_FLOCK_SERIALIZED_ACCEPT)
  static void expand_lock_fname(pool *p)
  {
      /* XXXX possibly bogus cast */
      ap_lock_fname = ap_psprintf(p, "%s.%lu",
        ap_server_root_relative(p, ap_lock_fname), (unsigned long)getpid());
  }
  #endif
  
  #if defined (USE_USLOCK_SERIALIZED_ACCEPT)
  
  #include <ulocks.h>
  
  static ulock_t uslock = NULL;
  
  #define accept_mutex_child_init(x)
  
  static void accept_mutex_init(pool *p)
  {
      ptrdiff_t old;
      usptr_t *us;
  
  
      /* default is 8, allocate enough for all the children plus the parent */
      if ((old = usconfig(CONF_INITUSERS, HARD_SERVER_LIMIT + 1)) == -1) {
        perror("usconfig(CONF_INITUSERS)");
        exit(-1);
      }
  
      if ((old = usconfig(CONF_LOCKTYPE, US_NODEBUG)) == -1) {
        perror("usconfig(CONF_LOCKTYPE)");
        exit(-1);
      }
      if ((old = usconfig(CONF_ARENATYPE, US_SHAREDONLY)) == -1) {
        perror("usconfig(CONF_ARENATYPE)");
        exit(-1);
      }
      if ((us = usinit("/dev/zero")) == NULL) {
        perror("usinit");
        exit(-1);
      }
  
      if ((uslock = usnewlock(us)) == NULL) {
        perror("usnewlock");
        exit(-1);
      }
  }
  
  static void accept_mutex_on(void)
  {
      switch (ussetlock(uslock)) {
      case 1:
        /* got lock */
        break;
      case 0:
        fprintf(stderr, "didn't get lock\n");
        clean_child_exit(APEXIT_CHILDFATAL);
      case -1:
        perror("ussetlock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  static void accept_mutex_off(void)
  {
      if (usunsetlock(uslock) == -1) {
        perror("usunsetlock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined (USE_PTHREAD_SERIALIZED_ACCEPT)
  
  /* This code probably only works on Solaris ... but it works really fast
   * on Solaris.  Note that pthread mutexes are *NOT* released when a task
   * dies ... the task has to free it itself.  So we block signals and
   * try to be nice about releasing the mutex.
   */
  
  #include <pthread.h>
  
  static pthread_mutex_t *accept_mutex = (void *)(caddr_t) -1;
  static int have_accept_mutex;
  static sigset_t accept_block_mask;
  static sigset_t accept_previous_mask;
  
  static void accept_mutex_child_cleanup(void *foo)
  {
      if (accept_mutex != (void *)(caddr_t)-1
        && have_accept_mutex) {
        pthread_mutex_unlock(accept_mutex);
      }
  }
  
  static void accept_mutex_child_init(pool *p)
  {
      ap_register_cleanup(p, NULL, accept_mutex_child_cleanup, ap_null_cleanup);
  }
  
  static void accept_mutex_cleanup(void *foo)
  {
      if (accept_mutex != (void *)(caddr_t)-1
        && munmap((caddr_t) accept_mutex, sizeof(*accept_mutex))) {
        perror("munmap");
      }
      accept_mutex = (void *)(caddr_t)-1;
  }
  
  static void accept_mutex_init(pool *p)
  {
      pthread_mutexattr_t mattr;
      int fd;
  
      fd = open("/dev/zero", O_RDWR);
      if (fd == -1) {
        perror("open(/dev/zero)");
        exit(APEXIT_INIT);
      }
      accept_mutex = (pthread_mutex_t *) mmap((caddr_t) 0, 
sizeof(*accept_mutex),
                                 PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
      if (accept_mutex == (void *) (caddr_t) - 1) {
        perror("mmap");
        exit(APEXIT_INIT);
      }
      close(fd);
      if ((errno = pthread_mutexattr_init(&mattr))) {
        perror("pthread_mutexattr_init");
        exit(APEXIT_INIT);
      }
      if ((errno = pthread_mutexattr_setpshared(&mattr,
                                                PTHREAD_PROCESS_SHARED))) {
        perror("pthread_mutexattr_setpshared");
        exit(APEXIT_INIT);
      }
      if ((errno = pthread_mutex_init(accept_mutex, &mattr))) {
        perror("pthread_mutex_init");
        exit(APEXIT_INIT);
      }
      sigfillset(&accept_block_mask);
      sigdelset(&accept_block_mask, SIGHUP);
      sigdelset(&accept_block_mask, SIGTERM);
      sigdelset(&accept_block_mask, SIGUSR1);
      ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
  }
  
  static void accept_mutex_on(void)
  {
      int err;
  
      if (sigprocmask(SIG_BLOCK, &accept_block_mask, &accept_previous_mask)) {
        perror("sigprocmask(SIG_BLOCK)");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
      if ((err = pthread_mutex_lock(accept_mutex))) {
        errno = err;
        perror("pthread_mutex_lock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
      have_accept_mutex = 1;
  }
  
  static void accept_mutex_off(void)
  {
      int err;
  
      if ((err = pthread_mutex_unlock(accept_mutex))) {
        errno = err;
        perror("pthread_mutex_unlock");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
      /* There is a slight race condition right here... if we were to die right
       * now, we'd do another pthread_mutex_unlock.  Now, doing that would let
       * another process into the mutex.  pthread mutexes are designed to be
       * fast, as such they don't have protection for things like testing if the
       * thread owning a mutex is actually unlocking it (or even any way of
       * testing who owns the mutex).
       *
       * If we were to unset have_accept_mutex prior to releasing the mutex
       * then the race could result in the server unable to serve hits.  Doing
       * it this way means that the server can continue, but an additional
       * child might be in the critical section ... at least it's still serving
       * hits.
       */
      have_accept_mutex = 0;
      if (sigprocmask(SIG_SETMASK, &accept_previous_mask, NULL)) {
        perror("sigprocmask(SIG_SETMASK)");
        clean_child_exit(1);
      }
  }
  
  #elif defined (USE_SYSVSEM_SERIALIZED_ACCEPT)
  
  #include <sys/types.h>
  #include <sys/ipc.h>
  #include <sys/sem.h>
  
  #ifdef NEED_UNION_SEMUN
  /* it makes no sense, but this isn't defined on solaris */
  union semun {
      long val;
      struct semid_ds *buf;
      ushort *array;
  };
  
  #endif
  
  static int sem_id = -1;
  static struct sembuf op_on;
  static struct sembuf op_off;
  
  /* We get a random semaphore ... the lame sysv semaphore interface
   * means we have to be sure to clean this up or else we'll leak
   * semaphores.
   */
  static void accept_mutex_cleanup(void *foo)
  {
      union semun ick;
  
      if (sem_id < 0)
        return;
      /* this is ignored anyhow */
      ick.val = 0;
      semctl(sem_id, 0, IPC_RMID, ick);
  }
  
  #define accept_mutex_child_init(x)
  
  static void accept_mutex_init(pool *p)
  {
      union semun ick;
      struct semid_ds buf;
  
      /* acquire the semaphore */
      sem_id = semget(IPC_PRIVATE, 1, IPC_CREAT | 0600);
      if (sem_id < 0) {
        perror("semget");
        exit(APEXIT_INIT);
      }
      ick.val = 1;
      if (semctl(sem_id, 0, SETVAL, ick) < 0) {
        perror("semctl(SETVAL)");
        exit(APEXIT_INIT);
      }
      if (!getuid()) {
        /* restrict it to use only by the appropriate user_id ... not that this
         * stops CGIs from acquiring it and dinking around with it.
         */
        buf.sem_perm.uid = unixd_config.user_id;
        buf.sem_perm.gid = unixd_config.group_id;
        buf.sem_perm.mode = 0600;
        ick.buf = &buf;
        if (semctl(sem_id, 0, IPC_SET, ick) < 0) {
            perror("semctl(IPC_SET)");
            exit(APEXIT_INIT);
        }
      }
      ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
  
      /* pre-initialize these */
      op_on.sem_num = 0;
      op_on.sem_op = -1;
      op_on.sem_flg = SEM_UNDO;
      op_off.sem_num = 0;
      op_off.sem_op = 1;
      op_off.sem_flg = SEM_UNDO;
  }
  
  static void accept_mutex_on(void)
  {
      while (semop(sem_id, &op_on, 1) < 0) {
        if (errno != EINTR) {
            perror("accept_mutex_on");
            clean_child_exit(APEXIT_CHILDFATAL);
        }
      }
  }
  
  static void accept_mutex_off(void)
  {
      while (semop(sem_id, &op_off, 1) < 0) {
        if (errno != EINTR) {
            perror("accept_mutex_off");
            clean_child_exit(APEXIT_CHILDFATAL);
        }
      }
  }
  
  #elif defined(USE_FCNTL_SERIALIZED_ACCEPT)
  static struct flock lock_it;
  static struct flock unlock_it;
  
  static int lock_fd = -1;
  
  #define accept_mutex_child_init(x)
  
  /*
   * Initialize mutex lock.
   * Must be safe to call this on a restart.
   */
  static void accept_mutex_init(pool *p)
  {
  
      lock_it.l_whence = SEEK_SET;      /* from current point */
      lock_it.l_start = 0;              /* -"- */
      lock_it.l_len = 0;                        /* until end of file */
      lock_it.l_type = F_WRLCK;         /* set exclusive/write lock */
      lock_it.l_pid = 0;                        /* pid not actually interesting 
*/
      unlock_it.l_whence = SEEK_SET;    /* from current point */
      unlock_it.l_start = 0;            /* -"- */
      unlock_it.l_len = 0;              /* until end of file */
      unlock_it.l_type = F_UNLCK;               /* set exclusive/write lock */
      unlock_it.l_pid = 0;              /* pid not actually interesting */
  
      expand_lock_fname(p);
      lock_fd = ap_popenf(p, ap_lock_fname, O_CREAT | O_WRONLY | O_EXCL, 0644);
      if (lock_fd == -1) {
        perror("open");
        fprintf(stderr, "Cannot open lock file: %s\n", ap_lock_fname);
        exit(APEXIT_INIT);
      }
      unlink(ap_lock_fname);
  }
  
  static void accept_mutex_on(void)
  {
      int ret;
  
      while ((ret = fcntl(lock_fd, F_SETLKW, &lock_it)) < 0 && errno == EINTR) {
        /* nop */
      }
  
      if (ret < 0) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "fcntl: F_SETLKW: Error getting accept lock, exiting!  "
                    "Perhaps you need to use the LockFile directive to place "
                    "your lock file on a local disk!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  static void accept_mutex_off(void)
  {
      int ret;
  
      while ((ret = fcntl(lock_fd, F_SETLKW, &unlock_it)) < 0 && errno == 
EINTR) {
        /* nop */
      }
      if (ret < 0) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "fcntl: F_SETLKW: Error freeing accept lock, exiting!  "
                    "Perhaps you need to use the LockFile directive to place "
                    "your lock file on a local disk!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined(USE_FLOCK_SERIALIZED_ACCEPT)
  
  static int lock_fd = -1;
  
  static void accept_mutex_cleanup(void *foo)
  {
      unlink(ap_lock_fname);
  }
  
  /*
   * Initialize mutex lock.
   * Done by each child at it's birth
   */
  static void accept_mutex_child_init(pool *p)
  {
  
      lock_fd = ap_popenf(p, ap_lock_fname, O_WRONLY, 0600);
      if (lock_fd == -1) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "Child cannot open lock file: %s", ap_lock_fname);
        clean_child_exit(APEXIT_CHILDINIT);
      }
  }
  
  /*
   * Initialize mutex lock.
   * Must be safe to call this on a restart.
   */
  static void accept_mutex_init(pool *p)
  {
      expand_lock_fname(p);
      unlink(ap_lock_fname);
      lock_fd = ap_popenf(p, ap_lock_fname, O_CREAT | O_WRONLY | O_EXCL, 0600);
      if (lock_fd == -1) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "Parent cannot open lock file: %s", ap_lock_fname);
        exit(APEXIT_INIT);
      }
      ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
  }
  
  static void accept_mutex_on(void)
  {
      int ret;
  
      while ((ret = flock(lock_fd, LOCK_EX)) < 0 && errno == EINTR)
        continue;
  
      if (ret < 0) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "flock: LOCK_EX: Error getting accept lock. Exiting!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  static void accept_mutex_off(void)
  {
      if (flock(lock_fd, LOCK_UN) < 0) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "flock: LOCK_UN: Error freeing accept lock. Exiting!");
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined(USE_OS2SEM_SERIALIZED_ACCEPT)
  
  static HMTX lock_sem = -1;
  
  static void accept_mutex_cleanup(void *foo)
  {
      DosReleaseMutexSem(lock_sem);
      DosCloseMutexSem(lock_sem);
  }
  
  /*
   * Initialize mutex lock.
   * Done by each child at it's birth
   */
  static void accept_mutex_child_init(pool *p)
  {
      int rc = DosOpenMutexSem(NULL, &lock_sem);
  
      if (rc != 0) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
                    "Child cannot open lock semaphore, rc=%d", rc);
        clean_child_exit(APEXIT_CHILDINIT);
      }
  }
  
  /*
   * Initialize mutex lock.
   * Must be safe to call this on a restart.
   */
  static void accept_mutex_init(pool *p)
  {
      int rc = DosCreateMutexSem(NULL, &lock_sem, DC_SEM_SHARED, FALSE);
  
      if (rc != 0) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
                    "Parent cannot create lock semaphore, rc=%d", rc);
        exit(APEXIT_INIT);
      }
  
      ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
  }
  
  static void accept_mutex_on(void)
  {
      int rc = DosRequestMutexSem(lock_sem, SEM_INDEFINITE_WAIT);
  
      if (rc != 0) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
                    "OS2SEM: Error %d getting accept lock. Exiting!", rc);
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  static void accept_mutex_off(void)
  {
      int rc = DosReleaseMutexSem(lock_sem);
      
      if (rc != 0) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
                    "OS2SEM: Error %d freeing accept lock. Exiting!", rc);
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  }
  
  #elif defined(USE_TPF_CORE_SERIALIZED_ACCEPT)
  
  static int tpf_core_held;
  
  static void accept_mutex_cleanup(void *foo)
  {
      if(tpf_core_held)
          coruc(RESOURCE_KEY);
  }
  
  #define accept_mutex_init(x)
  
  static void accept_mutex_child_init(pool *p)
  {
      ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
      tpf_core_held = 0;
  }
  
  static void accept_mutex_on(void)
  {
      corhc(RESOURCE_KEY);
      tpf_core_held = 1;
      ap_check_signals();
  }
  
  static void accept_mutex_off(void)
  {
      coruc(RESOURCE_KEY);
      tpf_core_held = 0;
      ap_check_signals();
  }
  
  #else
  /* Default --- no serialization.  Other methods *could* go here,
   * as #elifs...
   */
  #if !defined(MULTITHREAD)
  /* Multithreaded systems don't complete between processes for
   * the sockets. */
  #define NO_SERIALIZED_ACCEPT
  #define accept_mutex_child_init(x)
  #define accept_mutex_init(x)
  #define accept_mutex_on()
  #define accept_mutex_off()
  #endif
  #endif
  
  /* On some architectures it's safe to do unserialized accept()s in the single
   * Listen case.  But it's never safe to do it in the case where there's
   * multiple Listen statements.  Define SINGLE_LISTEN_UNSERIALIZED_ACCEPT
   * when it's safe in the single Listen case.
   */
  #ifdef SINGLE_LISTEN_UNSERIALIZED_ACCEPT
  #define SAFE_ACCEPT(stmt) do {if(ap_listeners->next != ap_listeners) {stmt;}} 
while(0)
  #else
  #define SAFE_ACCEPT(stmt) do {stmt;} while(0)
  #endif
  
  
  /*****************************************************************
   * dealing with other children
   */
  
  #ifdef HAS_OTHER_CHILD
  API_EXPORT(void) ap_register_other_child(int pid,
                       void (*maintenance) (int reason, void *, ap_wait_t 
status),
                          void *data, int write_fd)
  {
      other_child_rec *ocr;
  
      ocr = ap_palloc(pconf, sizeof(*ocr));
      ocr->pid = pid;
      ocr->maintenance = maintenance;
      ocr->data = data;
      ocr->write_fd = write_fd;
      ocr->next = other_children;
      other_children = ocr;
  }
  
  /* note that since this can be called by a maintenance function while we're
   * scanning the other_children list, all scanners should protect themself
   * by loading ocr->next before calling any maintenance function.
   */
  API_EXPORT(void) ap_unregister_other_child(void *data)
  {
      other_child_rec **pocr, *nocr;
  
      for (pocr = &other_children; *pocr; pocr = &(*pocr)->next) {
        if ((*pocr)->data == data) {
            nocr = (*pocr)->next;
            (*(*pocr)->maintenance) (OC_REASON_UNREGISTER, (*pocr)->data, -1);
            *pocr = nocr;
            /* XXX: um, well we've just wasted some space in pconf ? */
            return;
        }
      }
  }
  
  /* test to ensure that the write_fds are all still writable, otherwise
   * invoke the maintenance functions as appropriate */
  static void probe_writable_fds(void)
  {
      fd_set writable_fds;
      int fd_max;
      other_child_rec *ocr, *nocr;
      struct timeval tv;
      int rc;
  
      if (other_children == NULL)
        return;
  
      fd_max = 0;
      FD_ZERO(&writable_fds);
      do {
        for (ocr = other_children; ocr; ocr = ocr->next) {
            if (ocr->write_fd == -1)
                continue;
            FD_SET(ocr->write_fd, &writable_fds);
            if (ocr->write_fd > fd_max) {
                fd_max = ocr->write_fd;
            }
        }
        if (fd_max == 0)
            return;
  
        tv.tv_sec = 0;
        tv.tv_usec = 0;
        rc = ap_select(fd_max + 1, NULL, &writable_fds, NULL, &tv);
      } while (rc == -1 && errno == EINTR);
  
      if (rc == -1) {
        /* XXX: uhh this could be really bad, we could have a bad file
         * descriptor due to a bug in one of the maintenance routines */
        ap_log_unixerr("probe_writable_fds", "select",
                    "could not probe writable fds", server_conf);
        return;
      }
      if (rc == 0)
        return;
  
      for (ocr = other_children; ocr; ocr = nocr) {
        nocr = ocr->next;
        if (ocr->write_fd == -1)
            continue;
        if (FD_ISSET(ocr->write_fd, &writable_fds))
            continue;
        (*ocr->maintenance) (OC_REASON_UNWRITABLE, ocr->data, -1);
      }
  }
  
  /* possibly reap an other_child, return 0 if yes, -1 if not */
  static int reap_other_child(int pid, ap_wait_t status)
  {
      other_child_rec *ocr, *nocr;
  
      for (ocr = other_children; ocr; ocr = nocr) {
        nocr = ocr->next;
        if (ocr->pid != pid)
            continue;
        ocr->pid = -1;
        (*ocr->maintenance) (OC_REASON_DEATH, ocr->data, status);
        return 0;
      }
      return -1;
  }
  #endif
  
  /*****************************************************************
   *
   * Dealing with the scoreboard... a lot of these variables are global
   * only to avoid getting clobbered by the longjmp() that happens when
   * a hard timeout expires...
   *
   * We begin with routines which deal with the file itself... 
   */
  
  #if defined(USE_OS2_SCOREBOARD)
  
  /* The next two routines are used to access shared memory under OS/2.  */
  /* This requires EMX v09c to be installed.                           */
  
  caddr_t create_shared_heap(const char *name, size_t size)
  {
      ULONG rc;
      void *mem;
      Heap_t h;
  
      rc = DosAllocSharedMem(&mem, name, size,
                           PAG_COMMIT | PAG_READ | PAG_WRITE);
      if (rc != 0)
        return NULL;
      h = _ucreate(mem, size, !_BLOCK_CLEAN, _HEAP_REGULAR | _HEAP_SHARED,
                 NULL, NULL);
      if (h == NULL)
        DosFreeMem(mem);
      return (caddr_t) h;
  }
  
  caddr_t get_shared_heap(const char *Name)
  {
  
      PVOID BaseAddress;                /* Pointer to the base address of
                                   the shared memory object */
      ULONG AttributeFlags;     /* Flags describing characteristics
                                   of the shared memory object */
      APIRET rc;                        /* Return code */
  
      /* Request read and write access to */
      /*   the shared memory object       */
      AttributeFlags = PAG_WRITE | PAG_READ;
  
      rc = DosGetNamedSharedMem(&BaseAddress, Name, AttributeFlags);
  
      if (rc != 0) {
        printf("DosGetNamedSharedMem error: return code = %ld", rc);
        return 0;
      }
  
      return BaseAddress;
  }
  
  static void setup_shared_mem(pool *p)
  {
      caddr_t m;
  
      int rc;
  
      m = (caddr_t) create_shared_heap("\\SHAREMEM\\SCOREBOARD", 
SCOREBOARD_SIZE);
      if (m == 0) {
        fprintf(stderr, "%s: Could not create OS/2 Shared memory pool.\n",
                ap_server_argv0);
        exit(APEXIT_INIT);
      }
  
      rc = _uopen((Heap_t) m);
      if (rc != 0) {
        fprintf(stderr,
                "%s: Could not uopen() newly created OS/2 Shared memory 
pool.\n",
                ap_server_argv0);
      }
      ap_scoreboard_image = (scoreboard *) m;
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  static void reopen_scoreboard(pool *p)
  {
      caddr_t m;
      int rc;
  
      m = (caddr_t) get_shared_heap("\\SHAREMEM\\SCOREBOARD");
      if (m == 0) {
        fprintf(stderr, "%s: Could not find existing OS/2 Shared memory 
pool.\n",
                ap_server_argv0);
        exit(APEXIT_INIT);
      }
  
      rc = _uopen((Heap_t) m);
      ap_scoreboard_image = (scoreboard *) m;
  }
  
  #elif defined(USE_POSIX_SCOREBOARD)
  #include <sys/mman.h>
  /* 
   * POSIX 1003.4 style
   *
   * Note 1: 
   * As of version 4.23A, shared memory in QNX must reside under /dev/shmem,
   * where no subdirectories allowed.
   *
   * POSIX shm_open() and shm_unlink() will take care about this issue,
   * but to avoid confusion, I suggest to redefine scoreboard file name
   * in httpd.conf to cut "logs/" from it. With default setup actual name
   * will be "/dev/shmem/logs.apache_status". 
   * 
   * If something went wrong and Apache did not unlinked this object upon
   * exit, you can remove it manually, using "rm -f" command.
   * 
   * Note 2:
   * <sys/mman.h> in QNX defines MAP_ANON, but current implementation 
   * does NOT support BSD style anonymous mapping. So, the order of 
   * conditional compilation is important: 
   * this #ifdef section must be ABOVE the next one (BSD style).
   *
   * I tested this stuff and it works fine for me, but if it provides 
   * trouble for you, just comment out USE_MMAP_SCOREBOARD in QNX section
   * of ap_config.h
   *
   * June 5, 1997, 
   * Igor N. Kovalenko -- [EMAIL PROTECTED]
   */
  
  static void cleanup_shared_mem(void *d)
  {
      shm_unlink(ap_scoreboard_fname);
  }
  
  static void setup_shared_mem(pool *p)
  {
      char buf[512];
      caddr_t m;
      int fd;
  
      fd = shm_open(ap_scoreboard_fname, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
      if (fd == -1) {
        ap_snprintf(buf, sizeof(buf), "%s: could not open(create) scoreboard",
                    ap_server_argv0);
        perror(buf);
        exit(APEXIT_INIT);
      }
      if (ltrunc(fd, (off_t) SCOREBOARD_SIZE, SEEK_SET) == -1) {
        ap_snprintf(buf, sizeof(buf), "%s: could not ltrunc scoreboard",
                    ap_server_argv0);
        perror(buf);
        shm_unlink(ap_scoreboard_fname);
        exit(APEXIT_INIT);
      }
      if ((m = (caddr_t) mmap((caddr_t) 0,
                            (size_t) SCOREBOARD_SIZE, PROT_READ | PROT_WRITE,
                            MAP_SHARED, fd, (off_t) 0)) == (caddr_t) - 1) {
        ap_snprintf(buf, sizeof(buf), "%s: cannot mmap scoreboard",
                    ap_server_argv0);
        perror(buf);
        shm_unlink(ap_scoreboard_fname);
        exit(APEXIT_INIT);
      }
      close(fd);
      ap_register_cleanup(p, NULL, cleanup_shared_mem, ap_null_cleanup);
      ap_scoreboard_image = (scoreboard *) m;
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  static void reopen_scoreboard(pool *p)
  {
  }
  
  #elif defined(USE_MMAP_SCOREBOARD)
  
  static void setup_shared_mem(pool *p)
  {
      caddr_t m;
  
  #if defined(MAP_ANON)
  /* BSD style */
  #ifdef CONVEXOS11
      /*
       * 9-Aug-97 - Jeff Venters ([EMAIL PROTECTED])
       * ConvexOS maps address space as follows:
       *   0x00000000 - 0x7fffffff : Kernel
       *   0x80000000 - 0xffffffff : User
       * Start mmapped area 1GB above start of text.
       *
       * Also, the length requires a pointer as the actual length is
       * returned (rounded up to a page boundary).
       */
      {
        unsigned len = SCOREBOARD_SIZE;
  
        m = mmap((caddr_t) 0xC0000000, &len,
                 PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, NOFD, 0);
      }
  #elif defined(MAP_TMPFILE)
      {
        char mfile[] = "/tmp/apache_shmem_XXXX";
        int fd = mkstemp(mfile);
        if (fd == -1) {
            perror("open");
            fprintf(stderr, "%s: Could not open %s\n", ap_server_argv0, mfile);
            exit(APEXIT_INIT);
        }
        m = mmap((caddr_t) 0, SCOREBOARD_SIZE,
                PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
        if (m == (caddr_t) - 1) {
            perror("mmap");
            fprintf(stderr, "%s: Could not mmap %s\n", ap_server_argv0, mfile);
            exit(APEXIT_INIT);
        }
        close(fd);
        unlink(mfile);
      }
  #else
      m = mmap((caddr_t) 0, SCOREBOARD_SIZE,
             PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0);
  #endif
      if (m == (caddr_t) - 1) {
        perror("mmap");
        fprintf(stderr, "%s: Could not mmap memory\n", ap_server_argv0);
        exit(APEXIT_INIT);
      }
  #else
  /* Sun style */
      int fd;
  
      fd = open("/dev/zero", O_RDWR);
      if (fd == -1) {
        perror("open");
        fprintf(stderr, "%s: Could not open /dev/zero\n", ap_server_argv0);
        exit(APEXIT_INIT);
      }
      m = mmap((caddr_t) 0, SCOREBOARD_SIZE,
             PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
      if (m == (caddr_t) - 1) {
        perror("mmap");
        fprintf(stderr, "%s: Could not mmap /dev/zero\n", ap_server_argv0);
        exit(APEXIT_INIT);
      }
      close(fd);
  #endif
      ap_scoreboard_image = (scoreboard *) m;
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  static void reopen_scoreboard(pool *p)
  {
  }
  
  #elif defined(USE_SHMGET_SCOREBOARD)
  static key_t shmkey = IPC_PRIVATE;
  static int shmid = -1;
  
  static void setup_shared_mem(pool *p)
  {
      struct shmid_ds shmbuf;
  #ifdef MOVEBREAK
      char *obrk;
  #endif
  
      if ((shmid = shmget(shmkey, SCOREBOARD_SIZE, IPC_CREAT | SHM_R | SHM_W)) 
== -1) {
  #ifdef LINUX
        if (errno == ENOSYS) {
            ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
                         "Your kernel was built without CONFIG_SYSVIPC\n"
                         "%s: Please consult the Apache FAQ for details",
                         ap_server_argv0);
        }
  #endif
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                    "could not call shmget");
        exit(APEXIT_INIT);
      }
  
      ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
                "created shared memory segment #%d", shmid);
  
  #ifdef MOVEBREAK
      /*
       * Some SysV systems place the shared segment WAY too close
       * to the dynamic memory break point (sbrk(0)). This severely
       * limits the use of malloc/sbrk in the program since sbrk will
       * refuse to move past that point.
       *
       * To get around this, we move the break point "way up there",
       * attach the segment and then move break back down. Ugly
       */
      if ((obrk = sbrk(MOVEBREAK)) == (char *) -1) {
        ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
            "sbrk() could not move break");
      }
  #endif
  
  #define BADSHMAT      ((scoreboard *)(-1))
      if ((ap_scoreboard_image = (scoreboard *) shmat(shmid, 0, 0)) == 
BADSHMAT) {
        ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf, "shmat error");
        /*
         * We exit below, after we try to remove the segment
         */
      }
      else {                    /* only worry about permissions if we attached 
the segment */
        if (shmctl(shmid, IPC_STAT, &shmbuf) != 0) {
            ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
                "shmctl() could not stat segment #%d", shmid);
        }
        else {
            shmbuf.shm_perm.uid = unixd_config.user_id;
            shmbuf.shm_perm.gid = unixd_config.group_id;
            if (shmctl(shmid, IPC_SET, &shmbuf) != 0) {
                ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
                    "shmctl() could not set segment #%d", shmid);
            }
        }
      }
      /*
       * We must avoid leaving segments in the kernel's
       * (small) tables.
       */
      if (shmctl(shmid, IPC_RMID, NULL) != 0) {
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
                "shmctl: IPC_RMID: could not remove shared memory segment #%d",
                shmid);
      }
      if (ap_scoreboard_image == BADSHMAT)      /* now bailout */
        exit(APEXIT_INIT);
  
  #ifdef MOVEBREAK
      if (obrk == (char *) -1)
        return;                 /* nothing else to do */
      if (sbrk(-(MOVEBREAK)) == (char *) -1) {
        ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
            "sbrk() could not move break back");
      }
  #endif
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  static void reopen_scoreboard(pool *p)
  {
  }
  
  #elif defined(USE_TPF_SCOREBOARD)
  
  static void cleanup_scoreboard_heap()
  {
      int rv;
      rv = rsysc(ap_scoreboard_image, SCOREBOARD_FRAMES, SCOREBOARD_NAME);
      if(rv == RSYSC_ERROR) {
          ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
              "rsysc() could not release scoreboard system heap");
      }
  }
  
  static void setup_shared_mem(pool *p)
  {
      cinfc(CINFC_WRITE, CINFC_CMMCTK2);
      ap_scoreboard_image = (scoreboard *) gsysc(SCOREBOARD_FRAMES, 
SCOREBOARD_NAME);
  
      if (!ap_scoreboard_image) {
          fprintf(stderr, "httpd: Could not create scoreboard system heap 
storage.\n");
          exit(APEXIT_INIT);
      }
  
      ap_register_cleanup(p, NULL, cleanup_scoreboard_heap, ap_null_cleanup);
      ap_scoreboard_image->global.running_generation = 0;
  }
  
  static void reopen_scoreboard(pool *p)
  {
      cinfc(CINFC_WRITE, CINFC_CMMCTK2);
  }
  
  #else
  #define SCOREBOARD_FILE
  static scoreboard _scoreboard_image;
  static int scoreboard_fd = -1;
  
  /* XXX: things are seriously screwed if we ever have to do a partial
   * read or write ... we could get a corrupted scoreboard
   */
  static int force_write(int fd, void *buffer, int bufsz)
  {
      int rv, orig_sz = bufsz;
  
      do {
        rv = write(fd, buffer, bufsz);
        if (rv > 0) {
            buffer = (char *) buffer + rv;
            bufsz -= rv;
        }
      } while ((rv > 0 && bufsz > 0) || (rv == -1 && errno == EINTR));
  
      return rv < 0 ? rv : orig_sz - bufsz;
  }
  
  static int force_read(int fd, void *buffer, int bufsz)
  {
      int rv, orig_sz = bufsz;
  
      do {
        rv = read(fd, buffer, bufsz);
        if (rv > 0) {
            buffer = (char *) buffer + rv;
            bufsz -= rv;
        }
      } while ((rv > 0 && bufsz > 0) || (rv == -1 && errno == EINTR));
  
      return rv < 0 ? rv : orig_sz - bufsz;
  }
  
  static void cleanup_scoreboard_file(void *foo)
  {
      unlink(ap_scoreboard_fname);
  }
  
  void reopen_scoreboard(pool *p)
  {
      if (scoreboard_fd != -1)
        ap_pclosef(p, scoreboard_fd);
  
  #ifdef TPF
      ap_scoreboard_fname = ap_server_root_relative(p, ap_scoreboard_fname);
  #endif /* TPF */
      scoreboard_fd = ap_popenf(p, ap_scoreboard_fname, O_CREAT | O_BINARY | 
O_RDWR, 0666);
      if (scoreboard_fd == -1) {
        perror(ap_scoreboard_fname);
        fprintf(stderr, "Cannot open scoreboard file:\n");
        clean_child_exit(1);
      }
  }
  #endif
  
  /* Called by parent process */
  static void reinit_scoreboard(pool *p)
  {
      int running_gen = 0;
      if (ap_scoreboard_image)
        running_gen = ap_scoreboard_image->global.running_generation;
  
  #ifndef SCOREBOARD_FILE
      if (ap_scoreboard_image == NULL) {
        setup_shared_mem(p);
      }
      memset(ap_scoreboard_image, 0, SCOREBOARD_SIZE);
      ap_scoreboard_image->global.running_generation = running_gen;
  #else
      ap_scoreboard_image = &_scoreboard_image;
      ap_scoreboard_fname = ap_server_root_relative(p, ap_scoreboard_fname);
  
      scoreboard_fd = ap_popenf(p, ap_scoreboard_fname, O_CREAT | O_BINARY | 
O_RDWR, 0644);
      if (scoreboard_fd == -1) {
        perror(ap_scoreboard_fname);
        fprintf(stderr, "Cannot open scoreboard file:\n");
        exit(APEXIT_INIT);
      }
      ap_register_cleanup(p, NULL, cleanup_scoreboard_file, ap_null_cleanup);
  
      memset((char *) ap_scoreboard_image, 0, sizeof(*ap_scoreboard_image));
      ap_scoreboard_image->global.running_generation = running_gen;
      force_write(scoreboard_fd, ap_scoreboard_image, 
sizeof(*ap_scoreboard_image));
  #endif
  }
  
  /* Routines called to deal with the scoreboard image
   * --- note that we do *not* need write locks, since update_child_status
   * only updates a *single* record in place, and only one process writes to
   * a given scoreboard slot at a time (either the child process owning that
   * slot, or the parent, noting that the child has died).
   *
   * As a final note --- setting the score entry to getpid() is always safe,
   * since when the parent is writing an entry, it's only noting SERVER_DEAD
   * anyway.
   */
  
  ap_inline void ap_sync_scoreboard_image(void)
  {
  #ifdef SCOREBOARD_FILE
      lseek(scoreboard_fd, 0L, 0);
      force_read(scoreboard_fd, ap_scoreboard_image, 
sizeof(*ap_scoreboard_image));
  #endif
  }
  
  API_EXPORT(int) ap_exists_scoreboard_image(void)
  {
      return (ap_scoreboard_image ? 1 : 0);
  }
  
  static ap_inline void put_scoreboard_info(int child_num,
                                       short_score *new_score_rec)
  {
  #ifdef SCOREBOARD_FILE
      lseek(scoreboard_fd, (long) child_num * sizeof(short_score), 0);
      force_write(scoreboard_fd, new_score_rec, sizeof(short_score));
  #endif
  }
  
  int ap_update_child_status(int child_num, int status, request_rec *r)
  {
      int old_status;
      short_score *ss;
  
      if (child_num < 0)
        return -1;
  
      ap_check_signals();
  
      ap_sync_scoreboard_image();
      ss = &ap_scoreboard_image->servers[child_num];
      old_status = ss->status;
      ss->status = status;
  
      if (ap_extended_status) {
        if (status == SERVER_READY || status == SERVER_DEAD) {
            /*
             * Reset individual counters
             */
            if (status == SERVER_DEAD) {
                ss->my_access_count = 0L;
                ss->my_bytes_served = 0L;
            }
            ss->conn_count = (unsigned short) 0;
            ss->conn_bytes = (unsigned long) 0;
        }
        if (r) {
            conn_rec *c = r->connection;
            ap_cpystrn(ss->client, ap_get_remote_host(c, r->per_dir_config,
                                  REMOTE_NOLOOKUP), sizeof(ss->client));
            if (r->the_request == NULL) {
                    ap_cpystrn(ss->request, "NULL", sizeof(ss->request));
            } else if (r->parsed_uri.password == NULL) {
                    ap_cpystrn(ss->request, r->the_request, 
sizeof(ss->request));
            } else {
                /* Don't reveal the password in the server-status view */
                    ap_cpystrn(ss->request, ap_pstrcat(r->pool, r->method, " ",
                                               
ap_unparse_uri_components(r->pool, &r->parsed_uri, UNP_OMITPASSWORD),
                                               r->assbackwards ? NULL : " ", 
r->protocol, NULL),
                                       sizeof(ss->request));
            }
            ss->vhostrec =  r->server;
        }
      }
      if (status == SERVER_STARTING && r == NULL) {
        /* clean up the slot's vhostrec pointer (maybe re-used)
         * and mark the slot as belonging to a new generation.
         */
        ss->vhostrec = NULL;
        ap_scoreboard_image->parent[child_num].generation = ap_my_generation;
  #ifdef SCOREBOARD_FILE
        lseek(scoreboard_fd, XtOffsetOf(scoreboard, parent[child_num]), 0);
        force_write(scoreboard_fd, &ap_scoreboard_image->parent[child_num],
            sizeof(parent_score));
  #endif
      }
      put_scoreboard_info(child_num, ss);
  
      return old_status;
  }
  
  static void update_scoreboard_global(void)
  {
  #ifdef SCOREBOARD_FILE
      lseek(scoreboard_fd,
          (char *) &ap_scoreboard_image->global -(char *) ap_scoreboard_image, 
0);
      force_write(scoreboard_fd, &ap_scoreboard_image->global,
                sizeof ap_scoreboard_image->global);
  #endif
  }
  
  void ap_time_process_request(int child_num, int status)
  {
      short_score *ss;
  #if defined(NO_GETTIMEOFDAY) && !defined(NO_TIMES)
      struct tms tms_blk;
  #endif
  
      if (child_num < 0)
        return;
  
      ap_sync_scoreboard_image();
      ss = &ap_scoreboard_image->servers[child_num];
  
      if (status == START_PREQUEST) {
  #if defined(NO_GETTIMEOFDAY)
  #ifndef NO_TIMES
        if ((ss->start_time = times(&tms_blk)) == -1)
  #endif /* NO_TIMES */
            ss->start_time = (clock_t) 0;
  #else
        if (gettimeofday(&ss->start_time, (struct timezone *) 0) < 0)
            ss->start_time.tv_sec =
                ss->start_time.tv_usec = 0L;
  #endif
      }
      else if (status == STOP_PREQUEST) {
  #if defined(NO_GETTIMEOFDAY)
  #ifndef NO_TIMES
        if ((ss->stop_time = times(&tms_blk)) == -1)
  #endif
            ss->stop_time = ss->start_time = (clock_t) 0;
  #else
        if (gettimeofday(&ss->stop_time, (struct timezone *) 0) < 0)
            ss->stop_time.tv_sec =
                ss->stop_time.tv_usec =
                ss->start_time.tv_sec =
                ss->start_time.tv_usec = 0L;
  #endif
  
      }
  
      put_scoreboard_info(child_num, ss);
  }
  
  static void increment_counts(int child_num, request_rec *r)
  {
      long int bs = 0;
      short_score *ss;
  
      ap_sync_scoreboard_image();
      ss = &ap_scoreboard_image->servers[child_num];
  
      if (r->sent_bodyct)
        ap_bgetopt(r->connection->client, BO_BYTECT, &bs);
  
  #ifndef NO_TIMES
      times(&ss->times);
  #endif
      ss->access_count++;
      ss->my_access_count++;
      ss->conn_count++;
      ss->bytes_served += (unsigned long) bs;
      ss->my_bytes_served += (unsigned long) bs;
      ss->conn_bytes += (unsigned long) bs;
  
      put_scoreboard_info(child_num, ss);
  }
  
  static int find_child_by_pid(int pid)
  {
      int i;
  
      for (i = 0; i < max_daemons_limit; ++i)
        if (ap_scoreboard_image->parent[i].pid == pid)
            return i;
  
      return -1;
  }
  
  static void reclaim_child_processes(int terminate)
  {
  #ifndef MULTITHREAD
      int i, status;
      long int waittime = 1024 * 16;    /* in usecs */
      struct timeval tv;
      int waitret, tries;
      int not_dead_yet;
  #ifdef HAS_OTHER_CHILD
      other_child_rec *ocr, *nocr;
  #endif
  
      ap_sync_scoreboard_image();
  
      for (tries = terminate ? 4 : 1; tries <= 9; ++tries) {
        /* don't want to hold up progress any more than 
         * necessary, but we need to allow children a few moments to exit.
         * Set delay with an exponential backoff.
         */
        tv.tv_sec = waittime / 1000000;
        tv.tv_usec = waittime % 1000000;
        waittime = waittime * 4;
        ap_select(0, NULL, NULL, NULL, &tv);
  
        /* now see who is done */
        not_dead_yet = 0;
        for (i = 0; i < max_daemons_limit; ++i) {
            int pid = ap_scoreboard_image->parent[i].pid;
  
            if (pid == my_pid || pid == 0)
                continue;
  
            waitret = waitpid(pid, &status, WNOHANG);
            if (waitret == pid || waitret == -1) {
                ap_scoreboard_image->parent[i].pid = 0;
                continue;
            }
            ++not_dead_yet;
            switch (tries) {
            case 1:     /*  16ms */
            case 2:     /*  82ms */
                break;
            case 3:     /* 344ms */
                /* perhaps it missed the SIGHUP, lets try again */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING,
                            server_conf,
                    "child process %d did not exit, sending another SIGHUP",
                            pid);
                kill(pid, SIGHUP);
                waittime = 1024 * 16;
                break;
            case 4:     /*  16ms */
            case 5:     /*  82ms */
            case 6:     /* 344ms */
                break;
            case 7:     /* 1.4sec */
                /* ok, now it's being annoying */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING,
                            server_conf,
                   "child process %d still did not exit, sending a SIGTERM",
                            pid);
                kill(pid, SIGTERM);
                break;
            case 8:     /*  6 sec */
                /* die child scum */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
                   "child process %d still did not exit, sending a SIGKILL",
                            pid);
                kill(pid, SIGKILL);
                break;
            case 9:     /* 14 sec */
                /* gave it our best shot, but alas...  If this really 
                 * is a child we are trying to kill and it really hasn't
                 * exited, we will likely fail to bind to the port
                 * after the restart.
                 */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
                            "could not make child process %d exit, "
                            "attempting to continue anyway", pid);
                break;
            }
        }
  #ifdef HAS_OTHER_CHILD
        for (ocr = other_children; ocr; ocr = nocr) {
            nocr = ocr->next;
            if (ocr->pid == -1)
                continue;
  
            waitret = waitpid(ocr->pid, &status, WNOHANG);
            if (waitret == ocr->pid) {
                ocr->pid = -1;
                (*ocr->maintenance) (OC_REASON_DEATH, ocr->data, status);
            }
            else if (waitret == 0) {
                (*ocr->maintenance) (OC_REASON_RESTART, ocr->data, -1);
                ++not_dead_yet;
            }
            else if (waitret == -1) {
                /* uh what the heck? they didn't call unregister? */
                ocr->pid = -1;
                (*ocr->maintenance) (OC_REASON_LOST, ocr->data, -1);
            }
        }
  #endif
        if (!not_dead_yet) {
            /* nothing left to wait for */
            break;
        }
      }
  #endif /* ndef MULTITHREAD */
  }
  
  
  #if defined(NEED_WAITPID)
  /*
     Systems without a real waitpid sometimes lose a child's exit while waiting
     for another.  Search through the scoreboard for missing children.
   */
  int reap_children(ap_wait_t *status)
  {
      int n, pid;
  
      for (n = 0; n < max_daemons_limit; ++n) {
          ap_sync_scoreboard_image();
        if (ap_scoreboard_image->servers[n].status != SERVER_DEAD &&
                kill((pid = ap_scoreboard_image->parent[n].pid), 0) == -1) {
            ap_update_child_status(n, SERVER_DEAD, NULL);
            /* just mark it as having a successful exit status */
            bzero((char *) status, sizeof(ap_wait_t));
            return(pid);
        }
      }
      return 0;
  }
  #endif
  
  /* Finally, this routine is used by the caretaker process to wait for
   * a while...
   */
  
  /* number of calls to wait_or_timeout between writable probes */
  #ifndef INTERVAL_OF_WRITABLE_PROBES
  #define INTERVAL_OF_WRITABLE_PROBES 10
  #endif
  static int wait_or_timeout_counter;
  
  static int wait_or_timeout(ap_wait_t *status)
  {
      struct timeval tv;
      int ret;
  
      ++wait_or_timeout_counter;
      if (wait_or_timeout_counter == INTERVAL_OF_WRITABLE_PROBES) {
        wait_or_timeout_counter = 0;
  #ifdef HAS_OTHER_CHILD
        probe_writable_fds();
  #endif
      }
      ret = waitpid(-1, status, WNOHANG);
      if (ret == -1 && errno == EINTR) {
        return -1;
      }
      if (ret > 0) {
        return ret;
      }
  #ifdef NEED_WAITPID
      if ((ret = reap_children(status)) > 0) {
        return ret;
      }
  #endif
      tv.tv_sec = SCOREBOARD_MAINTENANCE_INTERVAL / 1000000;
      tv.tv_usec = SCOREBOARD_MAINTENANCE_INTERVAL % 1000000;
      ap_select(0, NULL, NULL, NULL, &tv);
      return -1;
  }
  
  
  #if defined(NSIG)
  #define NumSIG NSIG
  #elif defined(_NSIG)
  #define NumSIG _NSIG
  #elif defined(__NSIG)
  #define NumSIG __NSIG
  #else
  #define NumSIG 32   /* for 1998's unixes, this is still a good assumption */
  #endif
  
  #ifdef SYS_SIGLIST /* platform has sys_siglist[] */
  #define INIT_SIGLIST()  /*nothing*/
  #else /* platform has no sys_siglist[], define our own */
  #define SYS_SIGLIST ap_sys_siglist
  #define INIT_SIGLIST() siglist_init();
  
  const char *ap_sys_siglist[NumSIG];
  
  static void siglist_init(void)
  {
      int sig;
  
      ap_sys_siglist[0] = "Signal 0";
  #ifdef SIGHUP
      ap_sys_siglist[SIGHUP] = "Hangup";
  #endif
  #ifdef SIGINT
      ap_sys_siglist[SIGINT] = "Interrupt";
  #endif
  #ifdef SIGQUIT
      ap_sys_siglist[SIGQUIT] = "Quit";
  #endif
  #ifdef SIGILL
      ap_sys_siglist[SIGILL] = "Illegal instruction";
  #endif
  #ifdef SIGTRAP
      ap_sys_siglist[SIGTRAP] = "Trace/BPT trap";
  #endif
  #ifdef SIGIOT
      ap_sys_siglist[SIGIOT] = "IOT instruction";
  #endif
  #ifdef SIGABRT
      ap_sys_siglist[SIGABRT] = "Abort";
  #endif
  #ifdef SIGEMT
      ap_sys_siglist[SIGEMT] = "Emulator trap";
  #endif
  #ifdef SIGFPE
      ap_sys_siglist[SIGFPE] = "Arithmetic exception";
  #endif
  #ifdef SIGKILL
      ap_sys_siglist[SIGKILL] = "Killed";
  #endif
  #ifdef SIGBUS
      ap_sys_siglist[SIGBUS] = "Bus error";
  #endif
  #ifdef SIGSEGV
      ap_sys_siglist[SIGSEGV] = "Segmentation fault";
  #endif
  #ifdef SIGSYS
      ap_sys_siglist[SIGSYS] = "Bad system call";
  #endif
  #ifdef SIGPIPE
      ap_sys_siglist[SIGPIPE] = "Broken pipe";
  #endif
  #ifdef SIGALRM
      ap_sys_siglist[SIGALRM] = "Alarm clock";
  #endif
  #ifdef SIGTERM
      ap_sys_siglist[SIGTERM] = "Terminated";
  #endif
  #ifdef SIGUSR1
      ap_sys_siglist[SIGUSR1] = "User defined signal 1";
  #endif
  #ifdef SIGUSR2
      ap_sys_siglist[SIGUSR2] = "User defined signal 2";
  #endif
  #ifdef SIGCLD
      ap_sys_siglist[SIGCLD] = "Child status change";
  #endif
  #ifdef SIGCHLD
      ap_sys_siglist[SIGCHLD] = "Child status change";
  #endif
  #ifdef SIGPWR
      ap_sys_siglist[SIGPWR] = "Power-fail restart";
  #endif
  #ifdef SIGWINCH
      ap_sys_siglist[SIGWINCH] = "Window changed";
  #endif
  #ifdef SIGURG
      ap_sys_siglist[SIGURG] = "urgent socket condition";
  #endif
  #ifdef SIGPOLL
      ap_sys_siglist[SIGPOLL] = "Pollable event occurred";
  #endif
  #ifdef SIGIO
      ap_sys_siglist[SIGIO] = "socket I/O possible";
  #endif
  #ifdef SIGSTOP
      ap_sys_siglist[SIGSTOP] = "Stopped (signal)";
  #endif
  #ifdef SIGTSTP
      ap_sys_siglist[SIGTSTP] = "Stopped";
  #endif
  #ifdef SIGCONT
      ap_sys_siglist[SIGCONT] = "Continued";
  #endif
  #ifdef SIGTTIN
      ap_sys_siglist[SIGTTIN] = "Stopped (tty input)";
  #endif
  #ifdef SIGTTOU
      ap_sys_siglist[SIGTTOU] = "Stopped (tty output)";
  #endif
  #ifdef SIGVTALRM
      ap_sys_siglist[SIGVTALRM] = "virtual timer expired";
  #endif
  #ifdef SIGPROF
      ap_sys_siglist[SIGPROF] = "profiling timer expired";
  #endif
  #ifdef SIGXCPU
      ap_sys_siglist[SIGXCPU] = "exceeded cpu limit";
  #endif
  #ifdef SIGXFSZ
      ap_sys_siglist[SIGXFSZ] = "exceeded file size limit";
  #endif
      for (sig=0; sig < sizeof(ap_sys_siglist)/sizeof(ap_sys_siglist[0]); ++sig)
          if (ap_sys_siglist[sig] == NULL)
              ap_sys_siglist[sig] = "";
  }
  #endif /* platform has sys_siglist[] */
  
  
  /* handle all varieties of core dumping signals */
  static void sig_coredump(int sig)
  {
      chdir(ap_coredump_dir);
      signal(sig, SIG_DFL);
      kill(getpid(), sig);
      /* At this point we've got sig blocked, because we're still inside
       * the signal handler.  When we leave the signal handler it will
       * be unblocked, and we'll take the signal... and coredump or whatever
       * is appropriate for this particular Unix.  In addition the parent
       * will see the real signal we received -- whereas if we called
       * abort() here, the parent would only see SIGABRT.
       */
  }
  
  /*****************************************************************
   * Connection structures and accounting...
   */
  
  static void just_die(int sig)
  {
      clean_child_exit(0);
  }
  
  static int volatile deferred_die;
  static int volatile usr1_just_die;
  
  static void usr1_handler(int sig)
  {
      if (usr1_just_die) {
        just_die(sig);
      }
      deferred_die = 1;
  }
  
  /* volatile just in case */
  static int volatile shutdown_pending;
  static int volatile restart_pending;
  static int volatile is_graceful;
  ap_generation_t volatile ap_my_generation=0;
  
  static void sig_term(int sig)
  {
      if (shutdown_pending == 1) {
        /* Um, is this _probably_ not an error, if the user has
         * tried to do a shutdown twice quickly, so we won't
         * worry about reporting it.
         */
        return;
      }
      shutdown_pending = 1;
  }
  
  static void restart(int sig)
  {
      if (restart_pending == 1) {
        /* Probably not an error - don't bother reporting it */
        return;
      }
      restart_pending = 1;
      is_graceful = sig == SIGUSR1;
  }
  
  static void set_signals(void)
  {
  #ifndef NO_USE_SIGACTION
      struct sigaction sa;
  
      sigemptyset(&sa.sa_mask);
      sa.sa_flags = 0;
  
      if (!one_process) {
        sa.sa_handler = sig_coredump;
  #if defined(SA_ONESHOT)
        sa.sa_flags = SA_ONESHOT;
  #elif defined(SA_RESETHAND)
        sa.sa_flags = SA_RESETHAND;
  #endif
        if (sigaction(SIGSEGV, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGSEGV)");
  #ifdef SIGBUS
        if (sigaction(SIGBUS, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGBUS)");
  #endif
  #ifdef SIGABORT
        if (sigaction(SIGABORT, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGABORT)");
  #endif
  #ifdef SIGABRT
        if (sigaction(SIGABRT, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGABRT)");
  #endif
  #ifdef SIGILL
        if (sigaction(SIGILL, &sa, NULL) < 0)
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGILL)");
  #endif
        sa.sa_flags = 0;
      }
      sa.sa_handler = sig_term;
      if (sigaction(SIGTERM, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGTERM)");
  #ifdef SIGINT
      if (sigaction(SIGINT, &sa, NULL) < 0)
          ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGINT)");
  #endif
  #ifdef SIGXCPU
      sa.sa_handler = SIG_DFL;
      if (sigaction(SIGXCPU, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGXCPU)");
  #endif
  #ifdef SIGXFSZ
      sa.sa_handler = SIG_DFL;
      if (sigaction(SIGXFSZ, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGXFSZ)");
  #endif
  #ifdef SIGPIPE
      sa.sa_handler = SIG_IGN;
      if (sigaction(SIGPIPE, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGPIPE)");
  #endif
  
      /* we want to ignore HUPs and USR1 while we're busy processing one */
      sigaddset(&sa.sa_mask, SIGHUP);
      sigaddset(&sa.sa_mask, SIGUSR1);
      sa.sa_handler = restart;
      if (sigaction(SIGHUP, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGHUP)");
      if (sigaction(SIGUSR1, &sa, NULL) < 0)
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, 
"sigaction(SIGUSR1)");
  #else
      if (!one_process) {
        signal(SIGSEGV, sig_coredump);
  #ifdef SIGBUS
        signal(SIGBUS, sig_coredump);
  #endif /* SIGBUS */
  #ifdef SIGABORT
        signal(SIGABORT, sig_coredump);
  #endif /* SIGABORT */
  #ifdef SIGABRT
        signal(SIGABRT, sig_coredump);
  #endif /* SIGABRT */
  #ifdef SIGILL
        signal(SIGILL, sig_coredump);
  #endif /* SIGILL */
  #ifdef SIGXCPU
        signal(SIGXCPU, SIG_DFL);
  #endif /* SIGXCPU */
  #ifdef SIGXFSZ
        signal(SIGXFSZ, SIG_DFL);
  #endif /* SIGXFSZ */
      }
  
      signal(SIGTERM, sig_term);
  #ifdef SIGHUP
      signal(SIGHUP, restart);
  #endif /* SIGHUP */
  #ifdef SIGUSR1
      signal(SIGUSR1, restart);
  #endif /* SIGUSR1 */
  #ifdef SIGPIPE
      signal(SIGPIPE, SIG_IGN);
  #endif /* SIGPIPE */
  
  #endif
  }
  
  /*****************************************************************
   * Connection structures and accounting...
   */
  
  
  static conn_rec *new_connection(pool *p, server_rec *server, BUFF *inout,
                             const struct sockaddr_in *remaddr,
                             const struct sockaddr_in *saddr,
                             int child_num)
  {
      conn_rec *conn = (conn_rec *) ap_pcalloc(p, sizeof(conn_rec));
  
      /* Got a connection structure, so initialize what fields we can
       * (the rest are zeroed out by pcalloc).
       */
  
      conn->child_num = child_num;
  
      conn->pool = p;
      conn->local_addr = *saddr;
      conn->base_server = server;
      conn->client = inout;
  
      conn->remote_addr = *remaddr;
      conn->remote_ip = ap_pstrdup(conn->pool,
                              inet_ntoa(conn->remote_addr.sin_addr));
  
      return conn;
  }
  
  #if defined(TCP_NODELAY) && !defined(MPE) && !defined(TPF)
  static void sock_disable_nagle(int s)
  {
      /* The Nagle algorithm says that we should delay sending partial
       * packets in hopes of getting more data.  We don't want to do
       * this; we are not telnet.  There are bad interactions between
       * persistent connections and Nagle's algorithm that have very severe
       * performance penalties.  (Failing to disable Nagle is not much of a
       * problem with simple HTTP.)
       *
       * In spite of these problems, failure here is not a shooting offense.
       */
      int just_say_no = 1;
  
      if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (char *) &just_say_no,
                   sizeof(int)) < 0) {
        ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
                    "setsockopt: (TCP_NODELAY)");
      }
  }
  
  #else
  #define sock_disable_nagle(s) /* NOOP */
  #endif
  
  
  static int make_sock(pool *p, const struct sockaddr_in *server)
  {
      int s;
      int one = 1;
      char addr[512];
  
      if (server->sin_addr.s_addr != htonl(INADDR_ANY))
        ap_snprintf(addr, sizeof(addr), "address %s port %d",
                inet_ntoa(server->sin_addr), ntohs(server->sin_port));
      else
        ap_snprintf(addr, sizeof(addr), "port %d", ntohs(server->sin_port));
  
      /* note that because we're about to slack we don't use psocket */
      if ((s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
                    "make_sock: failed to get a socket for %s", addr);
        exit(1);
      }
  
      /* Solaris (probably versions 2.4, 2.5, and 2.5.1 with various levels
       * of tcp patches) has some really weird bugs where if you dup the
       * socket now it breaks things across SIGHUP restarts.  It'll either
       * be unable to bind, or it won't respond.
       */
  #if defined (SOLARIS2) && SOLARIS2 < 260
  #define WORKAROUND_SOLARIS_BUG
  #endif
  
      /* PR#1282 Unixware 1.x appears to have the same problem as solaris */
  #if defined (UW) && UW < 200
  #define WORKAROUND_SOLARIS_BUG
  #endif
  
      /* PR#1973 NCR SVR4 systems appear to have the same problem */
  #if defined (MPRAS)
  #define WORKAROUND_SOLARIS_BUG
  #endif
  
  #ifndef WORKAROUND_SOLARIS_BUG
      s = ap_slack(s, AP_SLACK_HIGH);
  
      ap_note_cleanups_for_socket(p, s);        /* arrange to close on exec or 
restart */
  #ifdef TPF
      os_note_additional_cleanups(p, s);
  #endif /* TPF */
  #endif
  
  #ifndef MPE
  /* MPE does not support SO_REUSEADDR and SO_KEEPALIVE */
  #ifndef _OSD_POSIX
      if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(int)) < 
0) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
                    "make_sock: for %s, setsockopt: (SO_REUSEADDR)", addr);
        close(s);
        return -1;
      }
  #endif /*_OSD_POSIX*/
      one = 1;
  #ifdef SO_KEEPALIVE
      if (setsockopt(s, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(int)) < 
0) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
                    "make_sock: for %s, setsockopt: (SO_KEEPALIVE)", addr);
        close(s);
        return -1;
      }
  #endif
  #endif
  
      sock_disable_nagle(s);
  
      /*
       * To send data over high bandwidth-delay connections at full
       * speed we must force the TCP window to open wide enough to keep the
       * pipe full.  The default window size on many systems
       * is only 4kB.  Cross-country WAN connections of 100ms
       * at 1Mb/s are not impossible for well connected sites.
       * If we assume 100ms cross-country latency,
       * a 4kB buffer limits throughput to 40kB/s.
       *
       * To avoid this problem I've added the SendBufferSize directive
       * to allow the web master to configure send buffer size.
       *
       * The trade-off of larger buffers is that more kernel memory
       * is consumed.  YMMV, know your customers and your network!
       *
       * -John Heidemann <[EMAIL PROTECTED]> 25-Oct-96
       *
       * If no size is specified, use the kernel default.
       */
  #ifndef BEOS                  /* BeOS does not support SO_SNDBUF */
      if (server_conf->send_buffer_size) {
        if (setsockopt(s, SOL_SOCKET, SO_SNDBUF,
                (char *) &server_conf->send_buffer_size, sizeof(int)) < 0) {
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
                        "make_sock: failed to set SendBufferSize for %s, "
                        "using default", addr);
            /* not a fatal error */
        }
      }
  #endif
  
  #ifdef MPE
  /* MPE requires CAP=PM and GETPRIVMODE to bind to ports less than 1024 */
      if (ntohs(server->sin_port) < 1024)
        GETPRIVMODE();
  #endif
      if (bind(s, (struct sockaddr *) server, sizeof(struct sockaddr_in)) == 
-1) {
        ap_log_error(APLOG_MARK, APLOG_CRIT, server_conf,
            "make_sock: could not bind to %s", addr);
  #ifdef MPE
        if (ntohs(server->sin_port) < 1024)
            GETUSERMODE();
  #endif
        close(s);
        exit(1);
      }
  #ifdef MPE
      if (ntohs(server->sin_port) < 1024)
        GETUSERMODE();
  #endif
  
      if (listen(s, ap_listenbacklog) == -1) {
        ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
            "make_sock: unable to listen for connections on %s", addr);
        close(s);
        exit(1);
      }
  
  #ifdef WORKAROUND_SOLARIS_BUG
      s = ap_slack(s, AP_SLACK_HIGH);
  
      ap_note_cleanups_for_socket(p, s);        /* arrange to close on exec or 
restart */
  #endif
  
  #ifdef CHECK_FD_SETSIZE
      /* protect various fd_sets */
      if (s >= FD_SETSIZE) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, NULL,
            "make_sock: problem listening on %s, filedescriptor (%u) "
            "larger than FD_SETSIZE (%u) "
            "found, you probably need to rebuild Apache with a "
            "larger FD_SETSIZE", addr, s, FD_SETSIZE);
        close(s);
        return -1;
      }
  #endif
  
      return s;
  }
  
  
  /*
   * During a restart we keep track of the old listeners here, so that we
   * can re-use the sockets.  We have to do this because we won't be able
   * to re-open the sockets ("Address already in use").
   *
   * Unlike the listeners ring, old_listeners is a NULL terminated list.
   *
   * copy_listeners() makes the copy, find_listener() finds an old listener
   * and close_unused_listener() cleans up whatever wasn't used.
   */
  static listen_rec *old_listeners;
  
  /* unfortunately copy_listeners may be called before listeners is a ring */
  static void copy_listeners(pool *p)
  {
      listen_rec *lr;
  
      ap_assert(old_listeners == NULL);
      if (ap_listeners == NULL) {
        return;
      }
      lr = ap_listeners;
      do {
        listen_rec *nr = malloc(sizeof *nr);
        if (nr == NULL) {
            fprintf(stderr, "Ouch!  malloc failed in copy_listeners()\n");
            exit(1);
        }
        *nr = *lr;
        ap_kill_cleanups_for_socket(p, nr->fd);
        nr->next = old_listeners;
        ap_assert(!nr->used);
        old_listeners = nr;
        lr = lr->next;
      } while (lr && lr != ap_listeners);
  }
  
  
  static int find_listener(listen_rec *lr)
  {
      listen_rec *or;
  
      for (or = old_listeners; or; or = or->next) {
        if (!memcmp(&or->local_addr, &lr->local_addr, sizeof(or->local_addr))) {
            or->used = 1;
            return or->fd;
        }
      }
      return -1;
  }
  
  
  static void close_unused_listeners(void)
  {
      listen_rec *or, *next;
  
      for (or = old_listeners; or; or = next) {
        next = or->next;
        if (!or->used)
            closesocket(or->fd);
        free(or);
      }
      old_listeners = NULL;
  }
  
  
  /* open sockets, and turn the listeners list into a singly linked ring */
  static void setup_listeners(pool *p)
  {
      listen_rec *lr;
      int fd;
  
      listenmaxfd = -1;
      FD_ZERO(&listenfds);
      lr = ap_listeners;
      for (;;) {
        fd = find_listener(lr);
        if (fd < 0) {
            fd = make_sock(p, &lr->local_addr);
        }
        else {
            ap_note_cleanups_for_socket(p, fd);
        }
        if (fd >= 0) {
            FD_SET(fd, &listenfds);
            if (fd > listenmaxfd)
                listenmaxfd = fd;
        }
        lr->fd = fd;
        if (lr->next == NULL)
            break;
        lr = lr->next;
      }
      /* turn the list into a ring */
      lr->next = ap_listeners;
      head_listener = ap_listeners;
      close_unused_listeners();
  
  #ifdef NO_SERIALIZED_ACCEPT
      /* warn them about the starvation problem if they're using multiple
       * sockets
       */
      if (ap_listeners->next != ap_listeners) {
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_CRIT, NULL,
                    "You cannot use multiple Listens safely on your system, "
                    "proceeding anyway.  See src/PORTING, search for "
                    "SERIALIZED_ACCEPT.");
      }
  #endif
  }
  
  
  /*
   * Find a listener which is ready for accept().  This advances the
   * head_listener global.
   */
  static ap_inline listen_rec *find_ready_listener(fd_set * main_fds)
  {
      listen_rec *lr;
  
      lr = head_listener;
      do {
        if (FD_ISSET(lr->fd, main_fds)) {
            head_listener = lr->next;
            return (lr);
        }
        lr = lr->next;
      } while (lr != head_listener);
      return NULL;
  }
  
  
  /*****************************************************************
   * Child process main loop.
   * The following vars are static to avoid getting clobbered by longjmp();
   * they are really private to child_main.
   */
  
  static int srv;
  static int csd;
  static int requests_this_child;
  static fd_set main_fds;
  
  API_EXPORT(void) ap_child_terminate(request_rec *r)
  {
      r->connection->keepalive = 0;
      requests_this_child = ap_max_requests_per_child = 1;
  }
  
  int ap_graceful_stop_signalled(void)
  {
      ap_sync_scoreboard_image();
      if (deferred_die ||
        ap_scoreboard_image->global.running_generation != ap_my_generation) {
        return 1;
      }
      return 0;
  }
  
  static void child_main(int child_num_arg)
  {
      NET_SIZE_T clen;
      struct sockaddr sa_server;
      struct sockaddr sa_client;
      listen_rec *lr;
      pool *ptrans;
      conn_rec *current_conn;
  
      my_pid = getpid();
      csd = -1;
      my_child_num = child_num_arg;
      requests_this_child = 0;
  
      /* Get a sub pool for global allocations in this child, so that
       * we can have cleanups occur when the child exits.
       */
      pchild = ap_make_sub_pool(pconf);
  
      ptrans = ap_make_sub_pool(pchild);
  
      /* needs to be done before we switch UIDs so we have permissions */
      reopen_scoreboard(pchild);
      SAFE_ACCEPT(accept_mutex_child_init(pchild));
  
      if (unixd_setup_child()) {
        clean_child_exit(APEXIT_CHILDFATAL);
      }
  
      ap_child_init_hook(pchild, server_conf);
  
      (void) ap_update_child_status(my_child_num, SERVER_READY, (request_rec *) 
NULL);
  
      signal(SIGHUP, just_die);
      signal(SIGTERM, just_die);
  
  #ifdef OS2
  /* Stop Ctrl-C/Ctrl-Break signals going to child processes */
      {
          unsigned long ulTimes;
          DosSetSignalExceptionFocus(0, &ulTimes);
      }
  #endif
  
      while (!ap_graceful_stop_signalled()) {
        BUFF *conn_io;
  
        /* Prepare to receive a SIGUSR1 due to graceful restart so that
         * we can exit cleanly.
         */
        usr1_just_die = 1;
        signal(SIGUSR1, usr1_handler);
  
        /*
         * (Re)initialize this child to a pre-connection state.
         */
  
        current_conn = NULL;
  
        ap_clear_pool(ptrans);
  
        if ((ap_max_requests_per_child > 0
             && requests_this_child++ >= ap_max_requests_per_child)) {
            clean_child_exit(0);
        }
  
        (void) ap_update_child_status(my_child_num, SERVER_READY, (request_rec 
*) NULL);
  
        /*
         * Wait for an acceptable connection to arrive.
         */
  
        /* Lock around "accept", if necessary */
        SAFE_ACCEPT(accept_mutex_on());
  
        for (;;) {
            if (ap_listeners->next != ap_listeners) {
                /* more than one socket */
                memcpy(&main_fds, &listenfds, sizeof(fd_set));
                srv = ap_select(listenmaxfd + 1, &main_fds, NULL, NULL, NULL);
  
                if (srv < 0 && errno != EINTR) {
                    /* Single Unix documents select as returning errnos
                     * EBADF, EINTR, and EINVAL... and in none of those
                     * cases does it make sense to continue.  In fact
                     * on Linux 2.0.x we seem to end up with EFAULT
                     * occasionally, and we'd loop forever due to it.
                     */
                    ap_log_error(APLOG_MARK, APLOG_ERR, server_conf, "select: 
(listen)");
                    clean_child_exit(1);
                }
  
                if (srv <= 0)
                    continue;
  
                lr = find_ready_listener(&main_fds);
                if (lr == NULL)
                    continue;
                sd = lr->fd;
            }
            else {
                /* only one socket, just pretend we did the other stuff */
                sd = ap_listeners->fd;
            }
  
            /* if we accept() something we don't want to die, so we have to
             * defer the exit
             */
            usr1_just_die = 0;
            for (;;) {
                if (deferred_die) {
                    /* we didn't get a socket, and we were told to die */
                    clean_child_exit(0);
                }
                clen = sizeof(sa_client);
                csd = ap_accept(sd, &sa_client, &clen);
                if (csd >= 0 || errno != EINTR)
                    break;
            }
  
            if (csd >= 0)
                break;          /* We have a socket ready for reading */
            else {
  
                /* Our old behaviour here was to continue after accept()
                 * errors.  But this leads us into lots of troubles
                 * because most of the errors are quite fatal.  For
                 * example, EMFILE can be caused by slow descriptor
                 * leaks (say in a 3rd party module, or libc).  It's
                 * foolish for us to continue after an EMFILE.  We also
                 * seem to tickle kernel bugs on some platforms which
                 * lead to never-ending loops here.  So it seems best
                 * to just exit in most cases.
                 */
                  switch (errno) {
  #ifdef EPROTO
                    /* EPROTO on certain older kernels really means
                     * ECONNABORTED, so we need to ignore it for them.
                     * See discussion in new-httpd archives nh.9701
                     * search for EPROTO.
                     *
                     * Also see nh.9603, search for EPROTO:
                     * There is potentially a bug in Solaris 2.x x<6,
                     * and other boxes that implement tcp sockets in
                     * userland (i.e. on top of STREAMS).  On these
                     * systems, EPROTO can actually result in a fatal
                     * loop.  See PR#981 for example.  It's hard to
                     * handle both uses of EPROTO.
                     */
                  case EPROTO:
  #endif
  #ifdef ECONNABORTED
                  case ECONNABORTED:
  #endif
                    /* Linux generates the rest of these, other tcp
                     * stacks (i.e. bsd) tend to hide them behind
                     * getsockopt() interfaces.  They occur when
                     * the net goes sour or the client disconnects
                     * after the three-way handshake has been done
                     * in the kernel but before userland has picked
                     * up the socket.
                     */
  #ifdef ECONNRESET
                  case ECONNRESET:
  #endif
  #ifdef ETIMEDOUT
                  case ETIMEDOUT:
  #endif
  #ifdef EHOSTUNREACH
                case EHOSTUNREACH:
  #endif
  #ifdef ENETUNREACH
                case ENETUNREACH:
  #endif
                      break;
  #ifdef TPF
                case EINACT:
                    ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                        "offload device inactive");
                    clean_child_exit(APEXIT_CHILDFATAL);
                    break;
                default:
                    ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, 
server_conf,
                        "select/accept error (%u)", errno);
                    clean_child_exit(APEXIT_CHILDFATAL);
  #else
                default:
                    ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
                                "accept: (client socket)");
                    clean_child_exit(1);
  #endif
                }
            }
  
            if (ap_graceful_stop_signalled()) {
                clean_child_exit(0);
            }
            usr1_just_die = 1;
        }
  
        SAFE_ACCEPT(accept_mutex_off());        /* unlock after "accept" */
  
  #ifdef TPF
        if (csd == 0)                       /* 0 is invalid socket for TPF */
            continue;
  #endif
  
        /* We've got a socket, let's at least process one request off the
         * socket before we accept a graceful restart request.  We set
         * the signal to ignore because we don't want to disturb any
         * third party code.
         */
        signal(SIGUSR1, SIG_IGN);
  
        ap_note_cleanups_for_fd(ptrans, csd);
  
        /* protect various fd_sets */
  #ifdef CHECK_FD_SETSIZE
        if (csd >= FD_SETSIZE) {
            ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, NULL,
                "[csd] filedescriptor (%u) larger than FD_SETSIZE (%u) "
                "found, you probably need to rebuild Apache with a "
                "larger FD_SETSIZE", csd, FD_SETSIZE);
            continue;
        }
  #endif
  
        /*
         * We now have a connection, so set it up with the appropriate
         * socket options, file descriptors, and read/write buffers.
         */
  
        clen = sizeof(sa_server);
        if (getsockname(csd, &sa_server, &clen) < 0) {
            ap_log_error(APLOG_MARK, APLOG_ERR, server_conf, "getsockname");
            continue;
        }
  
        sock_disable_nagle(csd);
  
        (void) ap_update_child_status(my_child_num, SERVER_BUSY_READ,
                                   (request_rec *) NULL);
  
        conn_io = ap_bcreate(ptrans, B_RDWR | B_SOCKET);
  
  #ifdef B_SFIO
        (void) sfdisc(conn_io->sf_in, SF_POPDISC);
        sfdisc(conn_io->sf_in, bsfio_new(conn_io->pool, conn_io));
        sfsetbuf(conn_io->sf_in, NULL, 0);
  
        (void) sfdisc(conn_io->sf_out, SF_POPDISC);
        sfdisc(conn_io->sf_out, bsfio_new(conn_io->pool, conn_io));
        sfsetbuf(conn_io->sf_out, NULL, 0);
  #endif
  
        ap_bpushfd(conn_io, csd);
  
        current_conn = new_connection(ptrans, server_conf, conn_io,
                                          (struct sockaddr_in *) &sa_client,
                                          (struct sockaddr_in *) &sa_server,
                                          my_child_num);
  
        ap_process_connection(current_conn);
      }
  }
  
  #ifdef TPF
  static void reset_tpf_listeners(APACHE_TPF_INPUT *input_parms)
  {
      int count;
      listen_rec *lr;
  
      count = 0;
      listenmaxfd = -1;
      FD_ZERO(&listenfds);
      lr = ap_listeners;
  
      for(;;) {
          lr->fd = input_parms->listeners[count];
          if(lr->fd >= 0) {
              FD_SET(lr->fd, &listenfds);
              if(lr->fd > listenmaxfd)
                  listenmaxfd = lr->fd;
          }
          if(lr->next == NULL)
              break;
          lr = lr->next;
          count++;
      }
      lr->next = ap_listeners;
      head_listener = ap_listeners;
      close_unused_listeners();
  }
  
  #endif /* TPF */
  
  static int make_child(server_rec *s, int slot, time_t now)
  {
      int pid;
  
      if (slot + 1 > max_daemons_limit) {
        max_daemons_limit = slot + 1;
      }
  
      if (one_process) {
        signal(SIGHUP, just_die);
        signal(SIGINT, just_die);
  #ifdef SIGQUIT
        signal(SIGQUIT, SIG_DFL);
  #endif
        signal(SIGTERM, just_die);
        child_main(slot);
      }
  
      /* avoid starvation */
      head_listener = head_listener->next;
  
      (void) ap_update_child_status(slot, SERVER_STARTING, (request_rec *) 
NULL);
  
  
  #ifdef _OSD_POSIX
      /* BS2000 requires a "special" version of fork() before a setuid() call */
      if ((pid = os_fork(unixd_config.user_name)) == -1) {
  #elif defined(TPF)
      if ((pid = os_fork(s, slot)) == -1) {
  #else
      if ((pid = fork()) == -1) {
  #endif
        ap_log_error(APLOG_MARK, APLOG_ERR, s, "fork: Unable to fork new 
process");
  
        /* fork didn't succeed. Fix the scoreboard or else
         * it will say SERVER_STARTING forever and ever
         */
        (void) ap_update_child_status(slot, SERVER_DEAD, (request_rec *) NULL);
  
        /* In case system resources are maxxed out, we don't want
           Apache running away with the CPU trying to fork over and
           over and over again. */
        sleep(10);
  
        return -1;
      }
  
      if (!pid) {
  #ifdef AIX_BIND_PROCESSOR
  /* by default AIX binds to a single processor
   * this bit unbinds children which will then bind to another cpu
   */
  #include <sys/processor.h>
        int status = bindprocessor(BINDPROCESS, (int)getpid(), 
                                   PROCESSOR_CLASS_ANY);
        if (status != OK) {
            ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, server_conf,
                        "processor unbind failed %d", status);
        }
  #endif
        RAISE_SIGSTOP(MAKE_CHILD);
        /* Disable the restart signal handlers and enable the just_die stuff.
         * Note that since restart() just notes that a restart has been
         * requested there's no race condition here.
         */
        signal(SIGHUP, just_die);
        signal(SIGUSR1, just_die);
        signal(SIGTERM, just_die);
        child_main(slot);
      }
  
      ap_scoreboard_image->parent[slot].pid = pid;
  #ifdef SCOREBOARD_FILE
      lseek(scoreboard_fd, XtOffsetOf(scoreboard, parent[slot]), 0);
      force_write(scoreboard_fd, &ap_scoreboard_image->parent[slot],
                sizeof(parent_score));
  #endif
  
      return 0;
  }
  
  
  /* start up a bunch of children */
  static void startup_children(int number_to_start)
  {
      int i;
      time_t now = time(0);
  
      for (i = 0; number_to_start && i < ap_daemons_limit; ++i) {
        if (ap_scoreboard_image->servers[i].status != SERVER_DEAD) {
            continue;
        }
        if (make_child(server_conf, i, now) < 0) {
            break;
        }
        --number_to_start;
      }
  }
  
  
  /*
   * idle_spawn_rate is the number of children that will be spawned on the
   * next maintenance cycle if there aren't enough idle servers.  It is
   * doubled up to MAX_SPAWN_RATE, and reset only when a cycle goes by
   * without the need to spawn.
   */
  static int idle_spawn_rate = 1;
  #ifndef MAX_SPAWN_RATE
  #define MAX_SPAWN_RATE        (32)
  #endif
  static int hold_off_on_exponential_spawning;
  
  static void perform_idle_server_maintenance(void)
  {
      int i;
      int to_kill;
      int idle_count;
      short_score *ss;
      time_t now = time(0);
      int free_length;
      int free_slots[MAX_SPAWN_RATE];
      int last_non_dead;
      int total_non_dead;
  
      /* initialize the free_list */
      free_length = 0;
  
      to_kill = -1;
      idle_count = 0;
      last_non_dead = -1;
      total_non_dead = 0;
  
      ap_sync_scoreboard_image();
      for (i = 0; i < ap_daemons_limit; ++i) {
        int status;
  
        if (i >= max_daemons_limit && free_length == idle_spawn_rate)
            break;
        ss = &ap_scoreboard_image->servers[i];
        status = ss->status;
        if (status == SERVER_DEAD) {
            /* try to keep children numbers as low as possible */
            if (free_length < idle_spawn_rate) {
                free_slots[free_length] = i;
                ++free_length;
            }
        }
        else {
            /* We consider a starting server as idle because we started it
             * at least a cycle ago, and if it still hasn't finished starting
             * then we're just going to swamp things worse by forking more.
             * So we hopefully won't need to fork more if we count it.
             * This depends on the ordering of SERVER_READY and SERVER_STARTING.
             */
            if (status <= SERVER_READY) {
                ++ idle_count;
                /* always kill the highest numbered child if we have to...
                 * no really well thought out reason ... other than observing
                 * the server behaviour under linux where lower numbered 
children
                 * tend to service more hits (and hence are more likely to have
                 * their data in cpu caches).
                 */
                to_kill = i;
            }
  
            ++total_non_dead;
            last_non_dead = i;
        }
      }
      max_daemons_limit = last_non_dead + 1;
      if (idle_count > ap_daemons_max_free) {
        /* kill off one child... we use SIGUSR1 because that'll cause it to
         * shut down gracefully, in case it happened to pick up a request
         * while we were counting
         */
        kill(ap_scoreboard_image->parent[to_kill].pid, SIGUSR1);
        idle_spawn_rate = 1;
      }
      else if (idle_count < ap_daemons_min_free) {
        /* terminate the free list */
        if (free_length == 0) {
            /* only report this condition once */
            static int reported = 0;
  
            if (!reported) {
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
                            "server reached MaxClients setting, consider"
                            " raising the MaxClients setting");
                reported = 1;
            }
            idle_spawn_rate = 1;
        }
        else {
            if (idle_spawn_rate >= 8) {
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
                    "server seems busy, (you may need "
                    "to increase StartServers, or Min/MaxSpareServers), "
                    "spawning %d children, there are %d idle, and "
                    "%d total children", idle_spawn_rate,
                    idle_count, total_non_dead);
            }
            for (i = 0; i < free_length; ++i) {
  #ifdef TPF
          if(make_child(server_conf, free_slots[i], now) == -1) {
              if(free_length == 1) {
                  shutdown_pending = 1;
                  ap_log_error(APLOG_MARK, APLOG_EMERG, server_conf,
                  "No active child processes: shutting down");
              }
          }
  #else
                make_child(server_conf, free_slots[i], now);
  #endif /* TPF */
            }
            /* the next time around we want to spawn twice as many if this
             * wasn't good enough, but not if we've just done a graceful
             */
            if (hold_off_on_exponential_spawning) {
                --hold_off_on_exponential_spawning;
            }
            else if (idle_spawn_rate < MAX_SPAWN_RATE) {
                idle_spawn_rate *= 2;
            }
        }
      }
      else {
        idle_spawn_rate = 1;
      }
  }
  
  
  static void process_child_status(int pid, ap_wait_t status)
  {
      /* Child died... if it died due to a fatal error,
        * we should simply bail out.
        */
      if ((WIFEXITED(status)) &&
        WEXITSTATUS(status) == APEXIT_CHILDFATAL) {
        ap_log_error(APLOG_MARK, APLOG_ALERT|APLOG_NOERRNO, server_conf,
                        "Child %d returned a Fatal error... \n"
                        "Apache is exiting!",
                        pid);
        exit(APEXIT_CHILDFATAL);
      }
      if (WIFSIGNALED(status)) {
        switch (WTERMSIG(status)) {
        case SIGTERM:
        case SIGHUP:
        case SIGUSR1:
        case SIGKILL:
            break;
        default:
  #ifdef SYS_SIGLIST
  #ifdef WCOREDUMP
            if (WCOREDUMP(status)) {
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE,
                             server_conf,
                             "child pid %d exit signal %s (%d), "
                             "possible coredump in %s",
                             pid, (WTERMSIG(status) >= NumSIG) ? "" : 
                             SYS_SIGLIST[WTERMSIG(status)], WTERMSIG(status),
                             ap_coredump_dir);
            }
            else {
  #endif
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE,
                             server_conf,
                             "child pid %d exit signal %s (%d)", pid,
                             SYS_SIGLIST[WTERMSIG(status)], WTERMSIG(status));
  #ifdef WCOREDUMP
            }
  #endif
  #else
            ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE,
                         server_conf,
                         "child pid %d exit signal %d",
                         pid, WTERMSIG(status));
  #endif
        }
      }
  }
  
  
  /*****************************************************************
   * Executive routines.
   */
  
  int ap_mpm_run(pool *_pconf, pool *plog, server_rec *s)
  {
      int remaining_children_to_start;
  
      pconf = _pconf;
  
      server_conf = s;
  
      ap_log_pid(pconf, ap_pid_fname);
      setup_listeners(pconf);
  
      SAFE_ACCEPT(accept_mutex_init(pconf));
      if (!is_graceful) {
        reinit_scoreboard(pconf);
      }
  #ifdef SCOREBOARD_FILE
      else {
        ap_scoreboard_fname = ap_server_root_relative(pconf, 
ap_scoreboard_fname);
        ap_note_cleanups_for_fd(pconf, scoreboard_fd);
      }
  #endif
  
      set_signals();
  
      if (ap_daemons_max_free < ap_daemons_min_free + 1)        /* Don't 
thrash... */
        ap_daemons_max_free = ap_daemons_min_free + 1;
  
      /* If we're doing a graceful_restart then we're going to see a lot
        * of children exiting immediately when we get into the main loop
        * below (because we just sent them SIGUSR1).  This happens pretty
        * rapidly... and for each one that exits we'll start a new one until
        * we reach at least daemons_min_free.  But we may be permitted to
        * start more than that, so we'll just keep track of how many we're
        * supposed to start up without the 1 second penalty between each fork.
        */
      remaining_children_to_start = ap_daemons_to_start;
      if (remaining_children_to_start > ap_daemons_limit) {
        remaining_children_to_start = ap_daemons_limit;
      }
      if (!is_graceful) {
        startup_children(remaining_children_to_start);
        remaining_children_to_start = 0;
      }
      else {
        /* give the system some time to recover before kicking into
            * exponential mode */
        hold_off_on_exponential_spawning = 10;
      }
  
      ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
                "%s configured -- resuming normal operations",
                ap_get_server_version());
      ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
                "Server built: %s", ap_get_server_built());
      restart_pending = shutdown_pending = 0;
  
      while (!restart_pending && !shutdown_pending) {
        int child_slot;
        ap_wait_t status;
        int pid = wait_or_timeout(&status);
  
        /* XXX: if it takes longer than 1 second for all our children
         * to start up and get into IDLE state then we may spawn an
         * extra child
         */
        if (pid >= 0) {
            process_child_status(pid, status);
            /* non-fatal death... note that it's gone in the scoreboard. */
            ap_sync_scoreboard_image();
            child_slot = find_child_by_pid(pid);
            if (child_slot >= 0) {
                (void) ap_update_child_status(child_slot, SERVER_DEAD,
                                            (request_rec *) NULL);
                if (remaining_children_to_start
                    && child_slot < ap_daemons_limit) {
                    /* we're still doing a 1-for-1 replacement of dead
                        * children with new children
                        */
                    make_child(server_conf, child_slot, time(0));
                    --remaining_children_to_start;
                }
  #ifdef HAS_OTHER_CHILD
            }
            else if (reap_other_child(pid, status) == 0) {
                /* handled */
  #endif
            }
            else if (is_graceful) {
                /* Great, we've probably just lost a slot in the
                    * scoreboard.  Somehow we don't know about this
                    * child.
                    */
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, 
server_conf,
                            "long lost child came home! (pid %d)", pid);
            }
            /* Don't perform idle maintenance when a child dies,
                * only do it when there's a timeout.  Remember only a
                * finite number of children can die, and it's pretty
                * pathological for a lot to die suddenly.
                */
            continue;
        }
        else if (remaining_children_to_start) {
            /* we hit a 1 second timeout in which none of the previous
                * generation of children needed to be reaped... so assume
                * they're all done, and pick up the slack if any is left.
                */
            startup_children(remaining_children_to_start);
            remaining_children_to_start = 0;
            /* In any event we really shouldn't do the code below because
                * few of the servers we just started are in the IDLE state
                * yet, so we'd mistakenly create an extra server.
                */
            continue;
        }
  
        perform_idle_server_maintenance();
  #ifdef TPF
      shutdown_pending = os_check_server(tpf_server_name);
      ap_check_signals();
      sleep(1);
  #endif /*TPF */
      }
  
      if (shutdown_pending) {
        /* Time to gracefully shut down:
         * Kill child processes, tell them to call child_exit, etc...
         */
        if (ap_killpg(getpgrp(), SIGTERM) < 0) {
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "killpg 
SIGTERM");
        }
        reclaim_child_processes(1);             /* Start with SIGTERM */
  
        /* cleanup pid file on normal shutdown */
        {
            const char *pidfile = NULL;
            pidfile = ap_server_root_relative (pconf, ap_pid_fname);
            if ( pidfile != NULL && unlink(pidfile) == 0)
                ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO,
                                server_conf,
                                "removed PID file %s (pid=%ld)",
                                pidfile, (long)getpid());
        }
  
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
                    "caught SIGTERM, shutting down");
        return 1;
      }
  
      /* we've been told to restart */
      signal(SIGHUP, SIG_IGN);
      signal(SIGUSR1, SIG_IGN);
  
      if (one_process) {
        /* not worth thinking about */
        return 1;
      }
  
      /* advance to the next generation */
      /* XXX: we really need to make sure this new generation number isn't in
       * use by any of the children.
       */
      ++ap_my_generation;
      ap_scoreboard_image->global.running_generation = ap_my_generation;
      update_scoreboard_global();
  
      if (is_graceful) {
  #ifndef SCOREBOARD_FILE
        int i;
  #endif
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
                    "SIGUSR1 received.  Doing graceful restart");
  
        /* kill off the idle ones */
        if (ap_killpg(getpgrp(), SIGUSR1) < 0) {
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "killpg 
SIGUSR1");
        }
  #ifndef SCOREBOARD_FILE
        /* This is mostly for debugging... so that we know what is still
            * gracefully dealing with existing request.  But we can't really
            * do it if we're in a SCOREBOARD_FILE because it'll cause
            * corruption too easily.
            */
        ap_sync_scoreboard_image();
        for (i = 0; i < ap_daemons_limit; ++i) {
            if (ap_scoreboard_image->servers[i].status != SERVER_DEAD) {
                ap_scoreboard_image->servers[i].status = SERVER_GRACEFUL;
            }
        }
  #endif
      }
      else {
        /* Kill 'em off */
        if (ap_killpg(getpgrp(), SIGHUP) < 0) {
            ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "killpg 
SIGHUP");
        }
        reclaim_child_processes(0);             /* Not when just starting up */
        ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
                    "SIGHUP received.  Attempting to restart");
      }
  
      /* must copy now before pconf is cleared */
      copy_listeners(pconf);
      if (!is_graceful) {
        ap_restart_time = time(NULL);
      }
  
      return 0;
  }
  
  static void prefork_pre_command_line(pool *pcommands)
  {
      INIT_SIGLIST();
  #ifdef AUX3
      (void) set42sig();
  #endif
      /* TODO: set one_process properly */ one_process = 0;
  }
  
  static void prefork_pre_config(pool *pconf, pool *plog, pool *ptemp)
  {
      static int restart_num = 0;
  
      one_process = ap_exists_config_define("ONE_PROCESS");
  
      /* sigh, want this only the second time around */
      if (restart_num++ == 1) {
        is_graceful = 0;
  
        if (!one_process) {
            unixd_detach();
        }
  
        my_pid = getpid();
      }
  
      unixd_pre_config();
      ap_daemons_to_start = DEFAULT_START_DAEMON;
      ap_daemons_min_free = DEFAULT_MIN_FREE_DAEMON;
      ap_daemons_max_free = DEFAULT_MAX_FREE_DAEMON;
      ap_daemons_limit = HARD_SERVER_LIMIT;
      ap_pid_fname = DEFAULT_PIDLOG;
      ap_scoreboard_fname = DEFAULT_SCOREBOARD;
      ap_lock_fname = DEFAULT_LOCKFILE;
      ap_max_requests_per_child = DEFAULT_MAX_REQUESTS_PER_CHILD;
      /* ZZZ  Initialize the Network Address here. */
      ap_bind_address.s_addr = htonl(INADDR_ANY);
      ap_listeners = NULL;
      ap_listenbacklog = DEFAULT_LISTENBACKLOG;
      ap_extended_status = 0;
  
      ap_cpystrn(ap_coredump_dir, ap_server_root, sizeof(ap_coredump_dir));
  }
  
  static void prefork_post_config(pool *pconf, pool *plog, pool *ptemp, 
server_rec *s)
  {
      if (ap_listeners == NULL) {
        /* allocate a default listener */
        listen_rec *new;
  
        new = ap_pcalloc(pconf, sizeof(listen_rec));
        new->local_addr.sin_family = AF_INET;
        new->local_addr.sin_addr = ap_bind_address;
        new->local_addr.sin_port = htons(s->port ? s->port : DEFAULT_HTTP_PORT);
        new->fd = -1;
        new->next = NULL;
        ap_listeners = new;
      }
  }
  
  static const char *set_pidfile(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      if (cmd->server->is_virtual) {
        return "PidFile directive not allowed in <VirtualHost>";
      }
      ap_pid_fname = arg;
      return NULL;
  }
  
  static const char *set_scoreboard(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_scoreboard_fname = arg;
      return NULL;
  }
  
  static const char *set_lockfile(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_lock_fname = arg;
      return NULL;
  }
  
  static const char *set_daemons_to_start(cmd_parms *cmd, void *dummy, char 
*arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_to_start = atoi(arg);
      return NULL;
  }
  
  static const char *set_min_free_servers(cmd_parms *cmd, void *dummy, char 
*arg)
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_min_free = atoi(arg);
      if (ap_daemons_min_free <= 0) {
         fprintf(stderr, "WARNING: detected MinSpareServers set to 
non-positive.\n");
         fprintf(stderr, "Resetting to 1 to avoid almost certain Apache 
failure.\n");
         fprintf(stderr, "Please read the documentation.\n");
         ap_daemons_min_free = 1;
      }
         
      return NULL;
  }
  
  static const char *set_max_free_servers(cmd_parms *cmd, void *dummy, char 
*arg)
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_max_free = atoi(arg);
      return NULL;
  }
  
  static const char *set_server_limit (cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_daemons_limit = atoi(arg);
      if (ap_daemons_limit > HARD_SERVER_LIMIT) {
         fprintf(stderr, "WARNING: MaxClients of %d exceeds compile time limit "
             "of %d servers,\n", ap_daemons_limit, HARD_SERVER_LIMIT);
         fprintf(stderr, " lowering MaxClients to %d.  To increase, please "
             "see the\n", HARD_SERVER_LIMIT);
         fprintf(stderr, " HARD_SERVER_LIMIT define in src/include/httpd.h.\n");
         ap_daemons_limit = HARD_SERVER_LIMIT;
      } 
      else if (ap_daemons_limit < 1) {
        fprintf(stderr, "WARNING: Require MaxClients > 0, setting to 1\n");
        ap_daemons_limit = 1;
      }
      return NULL;
  }
  
  static const char *set_max_requests(cmd_parms *cmd, void *dummy, char *arg) 
  {
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ap_max_requests_per_child = atoi(arg);
  
      return NULL;
  }
  
  static const char *set_coredumpdir (cmd_parms *cmd, void *dummy, char *arg) 
  {
      struct stat finfo;
      const char *fname;
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      fname = ap_server_root_relative(cmd->pool, arg);
      /* ZZZ change this to the AP func FileInfo*/
      if ((stat(fname, &finfo) == -1) || !S_ISDIR(finfo.st_mode)) {
        return ap_pstrcat(cmd->pool, "CoreDumpDirectory ", fname, 
                          " does not exist or is not a directory", NULL);
      }
      ap_cpystrn(ap_coredump_dir, fname, sizeof(ap_coredump_dir));
      return NULL;
  }
  
  static const char *set_listenbacklog(cmd_parms *cmd, void *dummy, char *arg) 
  {
      int b;
  
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      b = atoi(arg);
      if (b < 1) {
          return "ListenBacklog must be > 0";
      }
      ap_listenbacklog = b;
      return NULL;
  }
  
  static const char *set_listener(cmd_parms *cmd, void *dummy, char *ips)
  {
      listen_rec *new;
      char *ports;
      unsigned short port;
  
      const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
      if (err != NULL) {
          return err;
      }
  
      ports = strchr(ips, ':');
      if (ports != NULL) {
        if (ports == ips) {
            return "Missing IP address";
        }
        else if (ports[1] == '\0') {
            return "Address must end in :<port-number>";
        }
        *(ports++) = '\0';
      }
      else {
        ports = ips;
      }
  
      new=ap_pcalloc(cmd->pool, sizeof(listen_rec));
      /* ZZZ let's set this using the AP funcs. */
      new->local_addr.sin_family = AF_INET;
      if (ports == ips) { /* no address */
        /*  ZZZ Initialize the Network Address */
        new->local_addr.sin_addr.s_addr = htonl(INADDR_ANY);
      }
      else {
        new->local_addr.sin_addr.s_addr = ap_get_virthost_addr(ips, NULL);
      }
      port = atoi(ports);
      if (!port) {
        return "Port must be numeric";
      }
      /* ZZZ change to AP funcs.*/
      new->local_addr.sin_port = htons(port);
      new->fd = -1;    /*ZZZ change to NULL */
      new->used = 0;
      new->next = ap_listeners;
      ap_listeners = new;
      return NULL;
  }
  
  /* there are no threads in the prefork model, so the mutexes are
     nops. */
  /* TODO: make these #defines to eliminate the function call */
  
  struct ap_thread_mutex {
      int dummy;
  };
  
  API_EXPORT(ap_thread_mutex *) ap_thread_mutex_new(void)
  {
      return malloc(sizeof(ap_thread_mutex));
  }
  
  API_EXPORT(void) ap_thread_mutex_lock(ap_thread_mutex *mtx)
  {
  }
  
  API_EXPORT(void) ap_thread_mutex_unlock(ap_thread_mutex *mtx)
  {
  }
  
  API_EXPORT(void) ap_thread_mutex_destroy(ap_thread_mutex *mtx)
  {
      free(mtx);
  }
  
  
  static const command_rec prefork_cmds[] = {
  UNIX_DAEMON_COMMANDS
  { "PidFile", set_pidfile, NULL, RSRC_CONF, TAKE1,
      "A file for logging the server process ID"},
  { "ScoreBoardFile", set_scoreboard, NULL, RSRC_CONF, TAKE1,
      "A file for Apache to maintain runtime process management information"},
  { "LockFile", set_lockfile, NULL, RSRC_CONF, TAKE1,
      "The lockfile used when Apache needs to lock the accept() call"},
  { "StartServers", set_daemons_to_start, NULL, RSRC_CONF, TAKE1,
    "Number of child processes launched at server startup" },
  { "MinSpareServers", set_min_free_servers, NULL, RSRC_CONF, TAKE1,
    "Minimum number of idle children, to handle request spikes" },
  { "MaxSpareServers", set_max_free_servers, NULL, RSRC_CONF, TAKE1,
    "Maximum number of idle children" },
  { "MaxClients", set_server_limit, NULL, RSRC_CONF, TAKE1,
    "Maximum number of children alive at the same time" },
  { "MaxRequestsPerChild", set_max_requests, NULL, RSRC_CONF, TAKE1,
    "Maximum number of requests a particular child serves before dying." },
  { "CoreDumpDirectory", set_coredumpdir, NULL, RSRC_CONF, TAKE1,
    "The location of the directory Apache changes to before dumping core" },
  { "ListenBacklog", set_listenbacklog, NULL, RSRC_CONF, TAKE1,
    "Maximum length of the queue of pending connections, as used by listen(2)" 
},
  { "Listen", set_listener, NULL, RSRC_CONF, TAKE1,
    "A port number or a numeric IP address and a port number"},
  { NULL }
  };
  
  module MODULE_VAR_EXPORT mpm_prefork_module = {
      STANDARD20_MODULE_STUFF,
      prefork_pre_command_line, /* pre_command_line */
      prefork_pre_config,               /* pre_config */
      prefork_post_config,      /* post_config */
      NULL,                     /* open_logs */
      NULL,                     /* child_init */
      NULL,                     /* create per-directory config structure */
      NULL,                     /* merge per-directory config structures */
      NULL,                     /* create per-server config structure */
      NULL,                     /* merge per-server config structures */
      prefork_cmds,             /* command table */
      NULL,                     /* handlers */
      NULL,                     /* translate_handler */
      NULL,                     /* check_user_id */
      NULL,                     /* check auth */
      NULL,                     /* check access */
      NULL,                     /* type_checker */
      NULL,                     /* pre-run fixups */
      NULL,                     /* logger */
      NULL,                     /* header parser */
      NULL                      /* post_read_request */
  };
  
  
  

Reply via email to