Date: Thursday, September 29, 2022 @ 15:42:57
  Author: arojas
Revision: 1316344

upgpkg: sagemath 9.7-3: Fix issues with pari 2.15

Added:
  sagemath/trunk/sagemath-pari-2.15.patch
Modified:
  sagemath/trunk/PKGBUILD

--------------------------+
 PKGBUILD                 |   10 
 sagemath-pari-2.15.patch | 1750 +++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 1757 insertions(+), 3 deletions(-)

Modified: PKGBUILD
===================================================================
--- PKGBUILD    2022-09-29 15:41:59 UTC (rev 1316343)
+++ PKGBUILD    2022-09-29 15:42:57 UTC (rev 1316344)
@@ -7,7 +7,7 @@
 
 pkgname=sagemath
 pkgver=9.7
-pkgrel=2
+pkgrel=3
 pkgdesc='Open Source Mathematics Software, free alternative to Magma, Maple, 
Mathematica, and Matlab'
 arch=(x86_64)
 url='http://www.sagemath.org'
@@ -61,7 +61,8 @@
         sagemath-tachyon-0.99.patch
         sagemath-gap-4.12.patch
         sagemath-ipywidgets-8.patch
-        sagemath-tdlib-0.9.patch)
+        sagemath-tdlib-0.9.patch
+        sagemath-pari-2.15.patch)
 sha256sums=('9f26f14aa322e3cf38a71835b12ac34b23026b467f74d54b064c5d025e76fbfd'
             'eee5fa15d8c7be7e009166dbde3ea24bb10d7793dc12880516f278f86b1a6694'
             'bd188af45ce31579b82407adee8e9bf6033a996f7ea6e328fabca526f31c08ba'
@@ -71,7 +72,8 @@
             '9760db6c6ec40cc16ab8a0cbf3d019df7f6a69ff292e35622f282b7c888aac77'
             '84c1700e285ab1d94d16d0a602417a414447d8a23ac2e55a093285cc4bd2916d'
             'bdf56f85b608da12074780271ae134b02a03278f7b53a183f6dd97d8d72073e0'
-            '56a83abecf2ff5a500442adc7a50abbb70006037dd39c39dcdb04b3ca9fb51e2')
+            '56a83abecf2ff5a500442adc7a50abbb70006037dd39c39dcdb04b3ca9fb51e2'
+            '8930fcfc0ec8dc2c49c7bc1e853dbc33d8bf8fc0508f22f28980858b7264048f')
 
 prepare(){
   cd sage-$pkgver
@@ -87,6 +89,8 @@
   patch -p1 -i ../sagemath-gap-4.12.patch
 # Fixes for ipywidgets 8 https://trac.sagemath.org/ticket/34460
   patch -p1 -i ../sagemath-ipywidgets-8.patch
+# Update to PARI 2.15 https://trac.sagemath.org/ticket/34537
+  patch -p1 -i ../sagemath-pari-2.15.patch
 
 # Arch-specific patches
 # assume all optional packages are installed

Added: sagemath-pari-2.15.patch
===================================================================
--- sagemath-pari-2.15.patch                            (rev 0)
+++ sagemath-pari-2.15.patch    2022-09-29 15:42:57 UTC (rev 1316344)
@@ -0,0 +1,1750 @@
+diff --git a/build/pkgs/giac/patches/pari_2_15.patch 
b/build/pkgs/giac/patches/pari_2_15.patch
+new file mode 100644
+index 0000000000..d2900a5ffc
+--- /dev/null
++++ b/build/pkgs/giac/patches/pari_2_15.patch
+@@ -0,0 +1,21 @@
++ANYARG patch
++
++diff --git a/src/pari.cc b/src/pari.cc
++index 76ce8e1..50d08ab 100644
++--- a/src/pari.cc
+++++ b/src/pari.cc
++@@ -40,6 +40,13 @@ using namespace std;
++ 
++ #ifdef HAVE_LIBPARI
++ 
+++// Anyarg disappeared from PARI 2.15.0
+++#ifdef __cplusplus
+++#  define ANYARG ...
+++#else
+++#  define ANYARG
+++#endif
+++
++ #ifdef HAVE_PTHREAD_H
++ #include <pthread.h>
++ #endif
++
+diff --git a/build/pkgs/pari/checksums.ini b/build/pkgs/pari/checksums.ini
+index b736feed31..bafd0f36f4 100644
+--- a/build/pkgs/pari/checksums.ini
++++ b/build/pkgs/pari/checksums.ini
+@@ -1,5 +1,5 @@
+ tarball=pari-VERSION.tar.gz
+-sha1=e01647aab7e96a8cb4922cf26a4f224337c6647f
+-md5=922f740fcdf8630b30d63dc76b58f756
+-cksum=297133525
++sha1=cba9b279f67d5efe2fbbccf3be6e9725f816cf07
++md5=76d430f1bea1b07fa2ad9712deeaa736
++cksum=1990743897
+ upstream_url=https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-VERSION.tar.gz
+diff --git a/build/pkgs/pari/package-version.txt 
b/build/pkgs/pari/package-version.txt
+index a1a4224dd5..68e69e405e 100644
+--- a/build/pkgs/pari/package-version.txt
++++ b/build/pkgs/pari/package-version.txt
+@@ -1 +1 @@
+-2.13.3
++2.15.0
+diff --git a/src/doc/de/tutorial/tour_numtheory.rst 
b/src/doc/de/tutorial/tour_numtheory.rst
+index a012234c99..e3149fe949 100644
+--- a/src/doc/de/tutorial/tour_numtheory.rst
++++ b/src/doc/de/tutorial/tour_numtheory.rst
+@@ -157,7 +157,7 @@ implementiert.
+     Univariate Quotient Polynomial Ring in a over Rational Field with modulus
+     x^3 + x^2 - 2*x + 8
+     sage: K.units()
+-    (3*a^2 + 13*a + 13,)
++    (-3*a^2 - 13*a - 13,)
+     sage: K.discriminant()
+     -503
+     sage: K.class_group()
+diff --git a/src/doc/en/tutorial/tour_numtheory.rst 
b/src/doc/en/tutorial/tour_numtheory.rst
+index 3064d100e2..075e0ac0ad 100644
+--- a/src/doc/en/tutorial/tour_numtheory.rst
++++ b/src/doc/en/tutorial/tour_numtheory.rst
+@@ -157,7 +157,7 @@ NumberField class.
+     Univariate Quotient Polynomial Ring in a over Rational Field with modulus
+     x^3 + x^2 - 2*x + 8
+     sage: K.units()
+-    (3*a^2 + 13*a + 13,)
++    (-3*a^2 - 13*a - 13,)
+     sage: K.discriminant()
+     -503
+     sage: K.class_group()
+diff --git a/src/doc/es/tutorial/tour_numtheory.rst 
b/src/doc/es/tutorial/tour_numtheory.rst
+index a1f7d1a87b..48e5376cfe 100644
+--- a/src/doc/es/tutorial/tour_numtheory.rst
++++ b/src/doc/es/tutorial/tour_numtheory.rst
+@@ -140,7 +140,7 @@ Varios métodos relacionados están implementados en la 
clase ``NumberField``::
+     Univariate Quotient Polynomial Ring in a over Rational Field with modulus
+     x^3 + x^2 - 2*x + 8
+     sage: K.units()
+-    (3*a^2 + 13*a + 13,)
++    (-3*a^2 - 13*a - 13,)
+     sage: K.discriminant()
+     -503
+     sage: K.class_group()
+diff --git a/src/doc/fr/tutorial/tour_numtheory.rst 
b/src/doc/fr/tutorial/tour_numtheory.rst
+index 871092f5fa..d1b2fee883 100644
+--- a/src/doc/fr/tutorial/tour_numtheory.rst
++++ b/src/doc/fr/tutorial/tour_numtheory.rst
+@@ -159,7 +159,7 @@ dans la classe NumberField.
+     Univariate Quotient Polynomial Ring in a over Rational Field with modulus
+     x^3 + x^2 - 2*x + 8
+     sage: K.units()
+-    (3*a^2 + 13*a + 13,)
++    (-3*a^2 - 13*a - 13,)
+     sage: K.discriminant()
+     -503
+     sage: K.class_group()
+diff --git a/src/doc/ja/tutorial/tour_numtheory.rst 
b/src/doc/ja/tutorial/tour_numtheory.rst
+index 47af68c862..4d4ed52d50 100644
+--- a/src/doc/ja/tutorial/tour_numtheory.rst
++++ b/src/doc/ja/tutorial/tour_numtheory.rst
+@@ -161,7 +161,7 @@ Sageには :math:`p` \-進数体も組込まれている.
+     Univariate Quotient Polynomial Ring in a over Rational Field with modulus
+     x^3 + x^2 - 2*x + 8
+     sage: K.units()
+-    (3*a^2 + 13*a + 13,)
++    (-3*a^2 - 13*a - 13,)
+     sage: K.discriminant()
+     -503
+     sage: K.class_group()
+diff --git a/src/doc/pt/tutorial/tour_numtheory.rst 
b/src/doc/pt/tutorial/tour_numtheory.rst
+index 6371b491ea..a3dc973a93 100644
+--- a/src/doc/pt/tutorial/tour_numtheory.rst
++++ b/src/doc/pt/tutorial/tour_numtheory.rst
+@@ -157,7 +157,7 @@ NumberField.
+     Univariate Quotient Polynomial Ring in a over Rational Field with modulus 
+     x^3 + x^2 - 2*x + 8
+     sage: K.units()
+-    (3*a^2 + 13*a + 13,)
++    (-3*a^2 - 13*a - 13,)
+     sage: K.discriminant()
+     -503
+     sage: K.class_group()
+diff --git a/src/doc/ru/tutorial/tour_numtheory.rst 
b/src/doc/ru/tutorial/tour_numtheory.rst
+index 652abfbc99..a985d49fbd 100644
+--- a/src/doc/ru/tutorial/tour_numtheory.rst
++++ b/src/doc/ru/tutorial/tour_numtheory.rst
+@@ -150,7 +150,7 @@ Sage содержит стандартные функции теории чис
+     Univariate Quotient Polynomial Ring in a over Rational Field with modulus
+     x^3 + x^2 - 2*x + 8
+     sage: K.units()
+-    (3*a^2 + 13*a + 13,)
++    (-3*a^2 - 13*a - 13,)
+     sage: K.discriminant()
+     -503
+     sage: K.class_group()
+diff --git a/src/sage/arith/misc.py b/src/sage/arith/misc.py
+index e57076646f..fec75d07c1 100644
+--- a/src/sage/arith/misc.py
++++ b/src/sage/arith/misc.py
+@@ -1465,13 +1465,13 @@ def divisors(n):
+ 
+         sage: K.<a> = QuadraticField(7)
+         sage: divisors(K.ideal(7))
+-        [Fractional ideal (1), Fractional ideal (-a), Fractional ideal (7)]
++        [Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)]
+         sage: divisors(K.ideal(3))
+         [Fractional ideal (1), Fractional ideal (3),
+-        Fractional ideal (-a + 2), Fractional ideal (-a - 2)]
++        Fractional ideal (a - 2), Fractional ideal (a + 2)]
+         sage: divisors(K.ideal(35))
+-        [Fractional ideal (1), Fractional ideal (5), Fractional ideal (-a),
+-        Fractional ideal (7), Fractional ideal (-5*a), Fractional ideal (35)]
++        [Fractional ideal (1), Fractional ideal (5), Fractional ideal (a),
++        Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]
+ 
+     TESTS::
+ 
+@@ -2569,7 +2569,7 @@ def factor(n, proof=None, int_=False, algorithm='pari', 
verbose=0, **kwds):
+ 
+         sage: K.<i> = QuadraticField(-1)
+         sage: factor(122 - 454*i)
+-        (-3*i - 2) * (-i - 2)^3 * (i + 1)^3 * (i + 4)
++        (-i) * (-i - 2)^3 * (i + 1)^3 * (-2*i + 3) * (i + 4)
+ 
+     To access the data in a factorization::
+ 
+diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py 
b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py
+index cdfc11a9e5..b6e1280d6e 100644
+--- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py
++++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py
+@@ -7825,9 +7825,9 @@ class 
DynamicalSystem_projective_field(DynamicalSystem_projective,
+             sage: f = DynamicalSystem_projective([x^2 + QQbar(sqrt(3))*y^2, 
y^2, QQbar(sqrt(2))*z^2])
+             sage: f.reduce_base_field()
+             Dynamical System of Projective Space of dimension 2 over Number 
Field in a with
+-            defining polynomial y^4 - 4*y^2 + 1 with a = 1.931851652578137?
++            defining polynomial y^4 - 4*y^2 + 1 with a = -0.5176380902050415?
+               Defn: Defined on coordinates by sending (x : y : z) to
+-                    (x^2 + (a^2 - 2)*y^2 : y^2 : (a^3 - 3*a)*z^2)
++                    (x^2 + (-a^2 + 2)*y^2 : y^2 : (a^3 - 3*a)*z^2)
+ 
+         ::
+ 
+diff --git a/src/sage/ext_data/pari/simon/ellQ.gp 
b/src/sage/ext_data/pari/simon/ellQ.gp
+index 420af8f6a2..65e8386779 100644
+--- a/src/sage/ext_data/pari/simon/ellQ.gp
++++ b/src/sage/ext_data/pari/simon/ellQ.gp
+@@ -40,7 +40,7 @@
+   gp > \r ellcommon.gp
+   gp > \r ellQ.gp
+ 
+-  The main function is ellrank(), which takes as an argument
++  The main function is ellQ_ellrank(), which takes as an argument
+   any elliptic curve in the form [a1,a2,a3,a4,a6]
+   the result is a vector [r,s,v], where
+     r is a lower bound for the rank,
+@@ -50,7 +50,7 @@
+   Example:
+ 
+   gp > ell = [1,2,3,4,5];
+-  gp > ellrank(ell)
++  gp > ellQ_ellrank(ell)
+   %1 = [1, 1, [[1,2]]
+   In this example, the rank is exactly 1, and [1,2] has infinite order.
+ 
+@@ -92,7 +92,7 @@
+   \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
+ 
+   Explications succintes :
+-  La fonction ellrank() accepte toutes les courbes sous la forme
++  La fonction ellQ_ellrank() accepte toutes les courbes sous la forme
+   [a1,a2,a3,a4,a6]
+   Les coefficients peuvent etre entiers ou non.
+   L'algorithme utilise est celui de la 2-descente.
+@@ -100,7 +100,7 @@
+   Il suffit de taper : 
+ 
+   gp > ell = [a1,a2,a3,a4,a6];
+-  gp > ellrank(ell)
++  gp > ellQ_ellrank(ell)
+ 
+   Retourne un vecteur [r,s,v] ou
+     r est le rang probable (c'est toujours une minoration du rang),
+@@ -110,7 +110,7 @@
+   Exemple :
+ 
+   gp > ell = [1,2,3,4,5];
+-  gp > ellrank(ell)
++  gp > ellQ_ellrank(ell)
+   %1 = [1, 1, [[1,2]]
+   Ici, le rang est exactement 1, et le point [1,2] est d'ordre infini.
+ 
+@@ -1571,12 +1571,12 @@ if( DEBUGLEVEL_ell >= 4, print("    end of 
ell2descent_gen"));
+     print("rank(E/Q)    >= ",m1)
+   );
+ }
+-{ellrank(ell,help=[]) =
++{ellQ_ellrank(ell,help=[]) =
+ \\ Algorithm of 2-descent on the elliptic curve ell.
+ \\ help is a list of known points on ell.
+ my(urst,urst1,den,eqell,tors2,bnf,rang,time1);
+ 
+-if( DEBUGLEVEL_ell >= 3, print("   starting ellrank"));
++if( DEBUGLEVEL_ell >= 3, print("   starting ellQ_ellrank"));
+   if( #ell < 13, ell = ellinit(ell));
+ 
+ \\ kill the coefficients a1 and a3
+@@ -1630,7 +1630,7 @@ if( DEBUGLEVEL_ell >= 1, print(" Elliptic curve: Y^2 = 
",eqell));
+   ));
+ 
+   rang[3] = ellchangepoint(rang[3],ellinverturst(urst));
+-if( DEBUGLEVEL_ell >= 3, print("   end of ellrank"));
++if( DEBUGLEVEL_ell >= 3, print("   end of ellQ_ellrank"));
+ 
+   return(rang);
+ }
+@@ -2106,13 +2106,13 @@ if( DEBUGLEVEL_ell >= 3, print("   end of 
ell2descent_viaisog"));
+ {
+ \\                  functions for elliptic curves
+   addhelp(ell2descent_complete,
+-    "ell2descent_complete(e1,e2,e3): Performs a complete 2-descent on the 
elliptic curve y^2 = (x-e1)*(x-e2)*(x-e3). See ?ellrank for the format of the 
output.");
++    "ell2descent_complete(e1,e2,e3): Performs a complete 2-descent on the 
elliptic curve y^2 = (x-e1)*(x-e2)*(x-e3). See ?ellQ_ellrank for the format of 
the output.");
+   addhelp(ell2descent_gen,
+-    "ell2descent_gen((E,bnf,k=1,help=[]): E is a vector of the form 
[0,A,0,B,C], (or the result of ellinit of such a vector) A,B,C integers such 
that x^3+A*x^2+B*x+C; bnf is the corresponding bnfinit(,1); Performs 2-descent 
on the elliptic curve Ek: k*y^2=x^3+A*x^2+B*x+C. See ?ellrank for the format of 
the output.");
++    "ell2descent_gen((E,bnf,k=1,help=[]): E is a vector of the form 
[0,A,0,B,C], (or the result of ellinit of such a vector) A,B,C integers such 
that x^3+A*x^2+B*x+C; bnf is the corresponding bnfinit(,1); Performs 2-descent 
on the elliptic curve Ek: k*y^2=x^3+A*x^2+B*x+C. See ?ellQ_ellrank for the 
format of the output.");
+   addhelp(ell2descent_viaisog,
+-    "ell2descent_viaisog(E,help=[]): E is an elliptic curve of the form 
[0,a,0,b,0], with a, b integers. Performs a 2-descent via isogeny on E. See 
?ellrank for the format of the output.");
+-  addhelp(ellrank,
+-    "ellrank(E,help=[]): E is any elliptic curve defined over Q. Returns a 
vector [r,s,v], where r is a lower bound for the rank of E, s is the rank of 
its 2-Selmer group and v is a list of independant points in E(Q)/2E(Q). If help 
is a vector of nontrivial points on E, the result might be faster. This 
function might be used in conjunction with elltors2(E). See also 
?default_ellQ");
++    "ell2descent_viaisog(E,help=[]): E is an elliptic curve of the form 
[0,a,0,b,0], with a, b integers. Performs a 2-descent via isogeny on E. See 
?ellQ_ellrank for the format of the output.");
++  addhelp(ellQ_ellrank,
++    "ellQ_ellrank(E,help=[]): E is any elliptic curve defined over Q. Returns 
a vector [r,s,v], where r is a lower bound for the rank of E, s is the rank of 
its 2-Selmer group and v is a list of independant points in E(Q)/2E(Q). If help 
is a vector of nontrivial points on E, the result might be faster. This 
function might be used in conjunction with elltors2(E). See also 
?default_ellQ");
+   addhelp(ellhalf,
+     "ellhalf(E,P): returns the vector of all points Q on the elliptic curve E 
such that 2Q = P");
+   addhelp(ellredgen,
+@@ -2143,7 +2143,7 @@ if( DEBUGLEVEL_ell >= 3, print("   end of 
ell2descent_viaisog"));
+ 
+ \\                  others
+   addhelp(default_ellQ,
+-    "default_ellQ(DEBUGLEVEL_ell, LIM1, LIM3, LIMTRIV, ELLREDGENFLAG, 
COMPLETE, MAXPROB, LIMBIGPRIME): set the value of the global variables used for 
ellrank() and other related functions. DEBUGLEVEL_ell: 0-5: choose the quantity 
of information printed during the computation (default=0: print nothing); LIM1 
(resp LIM3): search limit for easy (resp hard) points on quartics; LIMTRIV: 
search limit for trivial points on elliptic curves; ELLREDGENFLAG: if != 0, try 
to reduce the generators at the end; COMPLETE: if != 0 and full 2-torsion, use 
complete 2-descent, otherwise via 2-isogeny; MAXPROB, LIMBIGPRIME: technical.");
++    "default_ellQ(DEBUGLEVEL_ell, LIM1, LIM3, LIMTRIV, ELLREDGENFLAG, 
COMPLETE, MAXPROB, LIMBIGPRIME): set the value of the global variables used for 
ellQ_ellrank() and other related functions. DEBUGLEVEL_ell: 0-5: choose the 
quantity of information printed during the computation (default=0: print 
nothing); LIM1 (resp LIM3): search limit for easy (resp hard) points on 
quartics; LIMTRIV: search limit for trivial points on elliptic curves; 
ELLREDGENFLAG: if != 0, try to reduce the generators at the end; COMPLETE: if 
!= 0 and full 2-torsion, use complete 2-descent, otherwise via 2-isogeny; 
MAXPROB, LIMBIGPRIME: technical.");
+ /*  addhelp(DEBUGLEVEL_ell,
+     "DEBUGLEVEL_ell: Choose a higher value of this global variable to have 
more details of the computations printed during the 2-descent algorithm. 0 = 
don't print anything; 1 = (default) just print the result; 2 = print more 
details including the Selmer group and the nontrivial quartics.");
+ */
+diff --git a/src/sage/ext_data/pari/simon/qfsolve.gp 
b/src/sage/ext_data/pari/simon/qfsolve.gp
+index 501fb50828..2107288c1d 100644
+--- a/src/sage/ext_data/pari/simon/qfsolve.gp
++++ b/src/sage/ext_data/pari/simon/qfsolve.gp
+@@ -434,146 +434,6 @@ my(cc);
+ return([U3~*G3*U3,red[2]*U1*U2*U3]);
+ }
+ 
+-\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
+-\\        QUADRATIC FORMS MINIMIZATION         \\
+-\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
+-
+-\\ Minimization of the quadratic form G, with nonzero determinant.
+-\\ of dimension n>=2.
+-\\ G must by symmetric and have integral coefficients.
+-\\ Returns [G',U,factd] with U in GLn(Q) such that G'=U~*G*U*constant
+-\\ is integral and has minimal determinant.
+-\\ In dimension 3 or 4, may return a prime p
+-\\ if the reduction at p is impossible because of the local non solvability.
+-\\ If given, factdetG must be equal to factor(abs(det(G))).
+-{qfminimize(G,factdetG) =
+-my(factd,U,Ker,Ker2,sol,aux,di);
+-my(p);
+-my(n,lf,i,vp,dimKer,dimKer2,m);
+-
+-  n = length(G);
+-  factd = matrix(0,2);
+-  if( !factdetG, factdetG = factor(matdet(G)));
+-
+-  lf = length(factdetG[,1]);
+-  i = 1; U = matid(n);
+-
+-  while(i <= lf,
+-    vp = factdetG[i,2];
+-    if( vp == 0, i++; next);
+-    p = factdetG[i,1];
+-    if( p == -1, i++; next);
+-if( DEBUGLEVEL_qfsolve >= 4, print("    p = ",p,"^",vp));
+-
+-\\ The case vp = 1 can be minimized only if n is odd.
+-    if( vp == 1 && n%2 == 0,
+-      factd = concat(factd~, Mat([p,1])~)~;
+-      i++; next
+-    );
+-    Ker = kermodp(G,p); dimKer = Ker[1]; Ker = Ker[2];
+-
+-\\ Rem: we must have dimKer <= vp
+-if( DEBUGLEVEL_qfsolve >= 4, print("    dimKer = ",dimKer));
+-\\ trivial case: dimKer = n
+-    if( dimKer == n, 
+-if( DEBUGLEVEL_qfsolve >= 4, print("     case 0: dimKer = n"));
+-      G /= p;
+-      factdetG[i,2] -= n;
+-      next
+-    );
+-    G = Ker~*G*Ker;
+-    U = U*Ker;
+-
+-\\ 1st case: dimKer < vp
+-\\ then the kernel mod p contains a kernel mod p^2
+-    if( dimKer < vp,
+-if( DEBUGLEVEL_qfsolve >= 4, print("    case 1: dimker < vp"));
+-      if( dimKer == 1,
+-\\        G[,1] /= p; G[1,] /= p;
+-        G[,1] /= p; G[1,] = G[1,]/p;
+-        U[,1] /= p;
+-        factdetG[i,2] -= 2
+-      , 
+-        Ker2 = kermodp(matrix(dimKer,dimKer,j,k,G[j,k]/p),p);
+-        dimKer2 = Ker2[1]; Ker2 = Ker2[2];
+-        for( j = 1, dimKer2, Ker2[,j] /= p);
+-        Ker2 = matdiagonalblock([Ker2,matid(n-dimKer)]);
+-        G = Ker2~*G*Ker2;
+-        U = U*Ker2;
+-        factdetG[i,2] -= 2*dimKer2
+-);
+-
+-if( DEBUGLEVEL_qfsolve >= 4, print("    end of case 1"));
+-      next
+-    );
+-
+-\\ Now, we have vp = dimKer 
+-\\ 2nd case: the dimension of the kernel is >=2
+-\\ and contains an element of norm 0 mod p^2
+-
+-\\ search for an element of norm p^2... in the kernel
+-    if( dimKer > 2 || 
+-       (dimKer == 2 && issquare( di = Mod((G[1,2]^2-G[1,1]*G[2,2])/p^2,p))),
+-      if( dimKer > 2,
+-if( DEBUGLEVEL_qfsolve >= 4, print("    case 2.1"));
+-        dimKer = 3;
+-        sol = qfsolvemodp(matrix(3,3,j,k,G[j,k]/p),p)
+-      ,
+-if( DEBUGLEVEL_qfsolve >= 4, print("    case 2.2"));
+-        if( G[1,1]%p^2 == 0, 
+-          sol = [1,0]~
+-        , sol = [-G[1,2]/p+sqrt(di),Mod(G[1,1]/p,p)]~
+-        )
+-      );
+-      sol = centerlift(sol);
+-      sol /= content(sol);
+-if( DEBUGLEVEL_qfsolve >= 4, print("    sol = ",sol));
+-      Ker = vectorv(n, j, if( j<= dimKer, sol[j], 0)); \\ fill with 0's
+-      Ker = completebasis(Ker,1);
+-      Ker[,n] /= p;
+-      G = Ker~*G*Ker;
+-      U = U*Ker;
+-      factdetG[i,2] -= 2;
+-if( DEBUGLEVEL_qfsolve >= 4, print("    end of case 2"));
+-      next
+-    );
+-
+-\\ Now, we have vp = dimKer <= 2 
+-\\   and the kernel contains no vector with norm p^2...
+-
+-\\ In some cases, exchanging the kernel and the image
+-\\ makes the minimization easy.
+-
+-    m = (n-1)\2-1;
+-    if( ( vp == 1 && issquare(Mod(-(-1)^m*matdet(G)/G[1,1],p)))
+-     || ( vp == 2 && n%2 == 1 && n >= 5)
+-     || ( vp == 2 && n%2 == 0 && !issquare(Mod((-1)^m*matdet(G)/p^2,p)))
+-    , 
+-if( DEBUGLEVEL_qfsolve >= 4, print("    case 3"));
+-      Ker = matid(n);
+-      for( j = dimKer+1, n, Ker[j,j] = p);
+-      G = Ker~*G*Ker/p;
+-      U = U*Ker;
+-      factdetG[i,2] -= 2*dimKer-n;
+-if( DEBUGLEVEL_qfsolve >= 4, print("    end of case 3"));
+-      next
+-    );
+-
+-\\ Minimization was not possible se far.
+-\\ If n == 3 or 4, this proves the local non-solubility at p.
+-    if( n == 3 || n == 4, 
+-if( DEBUGLEVEL_qfsolve >= 1, print(" no local solution at ",p));
+-      return(p));
+-
+-if( DEBUGLEVEL_qfsolve >= 4, print("    prime ",p," finished"));
+-    factd = concat(factd~,Mat([p,vp])~)~;
+-    i++
+-  );
+-\\ apply LLL to avoid coefficients explosion
+-  aux = qflll(U/content(U));
+-return([aux~*G*aux,U*aux,factd]);
+-}
+-
+ \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
+ \\          CLASS GROUP COMPUTATIONS           \\
+ \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
+diff --git a/src/sage/geometry/polyhedron/backend_field.py 
b/src/sage/geometry/polyhedron/backend_field.py
+index 6b921d23a6..2f32c58b1e 100644
+--- a/src/sage/geometry/polyhedron/backend_field.py
++++ b/src/sage/geometry/polyhedron/backend_field.py
+@@ -265,7 +265,7 @@ class Polyhedron_field(Polyhedron_base):
+              An inequality (-0.1419794359520263?, -1.698172434277148?) x + 
1.200789243901438? >= 0,
+              An inequality (0.3001973109753594?, 0.600394621950719?) x - 
0.4245431085692869? >= 0)
+             sage: p.Vrepresentation()                                         
  # optional - sage.rings.number_field
+-            (A vertex at (0.?e-15, 0.707106781186548?),
++            (A vertex at (0.?e-16, 0.7071067811865475?),
+              A vertex at (1.414213562373095?, 0),
+              A vertex at (4.000000000000000?, 0.372677996249965?))
+         """
+@@ -308,7 +308,7 @@ class Polyhedron_field(Polyhedron_base):
+              An inequality (-0.1419794359520263?, -1.698172434277148?) x + 
1.200789243901438? >= 0,
+              An inequality (0.3001973109753594?, 0.600394621950719?) x - 
0.4245431085692869? >= 0)
+             sage: p.Vrepresentation()                                         
  # optional - sage.rings.number_field
+-            (A vertex at (0.?e-15, 0.707106781186548?),
++            (A vertex at (0.?e-16, 0.7071067811865475?),
+              A vertex at (1.414213562373095?, 0),
+              A vertex at (4.000000000000000?, 0.372677996249965?))
+         """
+diff --git a/src/sage/geometry/polyhedron/backend_normaliz.py 
b/src/sage/geometry/polyhedron/backend_normaliz.py
+index 86b89632a5..ca8a43b248 100644
+--- a/src/sage/geometry/polyhedron/backend_normaliz.py
++++ b/src/sage/geometry/polyhedron/backend_normaliz.py
+@@ -53,7 +53,7 @@ def 
_number_field_elements_from_algebraics_list_of_lists_of_lists(listss, **kwds
+         1.732050807568878?
+         sage: from sage.geometry.polyhedron.backend_normaliz import 
_number_field_elements_from_algebraics_list_of_lists_of_lists
+         sage: K, results, hom = 
_number_field_elements_from_algebraics_list_of_lists_of_lists([[[rt2], [1]], 
[[rt3]], [[1], []]]); results  # optional - sage.rings.number_field
+-        [[[-a^3 + 3*a], [1]], [[-a^2 + 2]], [[1], []]]
++        [[[-a^3 + 3*a], [1]], [[a^2 - 2]], [[1], []]]
+     """
+     from sage.rings.qqbar import number_field_elements_from_algebraics
+     numbers = []
+diff --git a/src/sage/groups/matrix_gps/isometries.py 
b/src/sage/groups/matrix_gps/isometries.py
+index f9111a2c92..cca45e7175 100644
+--- a/src/sage/groups/matrix_gps/isometries.py
++++ b/src/sage/groups/matrix_gps/isometries.py
+@@ -11,11 +11,11 @@ EXAMPLES::
+     sage: L = IntegralLattice("D4")
+     sage: O = L.orthogonal_group()
+     sage: O
+-    Group of isometries with 5 generators (
+-    [-1  0  0  0]  [0 0 0 1]  [-1 -1 -1 -1]  [ 1  1  0  0]  [ 1  0  0  0]
+-    [ 0 -1  0  0]  [0 1 0 0]  [ 0  0  1  0]  [ 0  0  1  0]  [-1 -1 -1 -1]
+-    [ 0  0 -1  0]  [0 0 1 0]  [ 0  1  0  1]  [ 0  1  0  1]  [ 0  0  1  0]
+-    [ 0  0  0 -1], [1 0 0 0], [ 0 -1 -1  0], [ 0 -1 -1  0], [ 0  0  0  1]
++    Group of isometries with 3 generators (
++    [0 0 0 1]  [ 1  1  0  0]  [ 1  0  0  0]
++    [0 1 0 0]  [ 0  0  1  0]  [-1 -1 -1 -1]
++    [0 0 1 0]  [ 0  1  0  1]  [ 0  0  1  0]
++    [1 0 0 0], [ 0 -1 -1  0], [ 0  0  0  1]
+     )
+ 
+ Basic functionality is provided by GAP::
+diff --git a/src/sage/interfaces/genus2reduction.py 
b/src/sage/interfaces/genus2reduction.py
+index 56ae04b235..7a4794daf2 100644
+--- a/src/sage/interfaces/genus2reduction.py
++++ b/src/sage/interfaces/genus2reduction.py
+@@ -143,31 +143,31 @@ class ReductionData(SageObject):
+        sur un corps de valuation discrète", Trans. AMS 348 (1996),
+        4577-4610, Section 7.2, Proposition 4).
+     """
+-    def __init__(self, pari_result, P, Q, minimal_equation, minimal_disc,
+-                 local_data, conductor, prime_to_2_conductor_only):
++    def __init__(self, pari_result, P, Q, Pmin, Qmin, minimal_disc,
++                 local_data, conductor):
+         self.pari_result = pari_result
+         self.P = P
+         self.Q = Q
+-        self.minimal_equation = minimal_equation
++        self.Pmin = Pmin
++        self.Qmin = Qmin
+         self.minimal_disc = minimal_disc
+         self.local_data = local_data
+         self.conductor = conductor
+-        self.prime_to_2_conductor_only = prime_to_2_conductor_only
+ 
+     def _repr_(self):
+-        if self.prime_to_2_conductor_only:
+-            ex = ' (away from 2)'
+-        else:
+-            ex = ''
+         if self.Q == 0:
+             yterm = ''
+         else:
+             yterm = '+ (%s)*y '%self.Q
++
+         s = 'Reduction data about this proper smooth genus 2 curve:\n'
+         s += '\ty^2 %s= %s\n'%(yterm, self.P)
+-        s += 'A Minimal Equation (away from 2):\n\ty^2 = 
%s\n'%self.minimal_equation
+-        s += 'Minimal Discriminant (away from 2):  %s\n'%self.minimal_disc
+-        s += 'Conductor%s: %s\n'%(ex, self.conductor)
++        if self.Qmin:
++            s += 'A Minimal Equation:\n\ty^2 + (%s)y = %s\n'%(self.Qmin, 
self.Pmin)
++        else:
++            s += 'A Minimal Equation:\n\ty^2 = %s\n'%self.Pmin
++        s += 'Minimal Discriminant: %s\n'%self.minimal_disc
++        s += 'Conductor: %s\n'%self.conductor
+         s += 'Local Data:\n%s'%self._local_data_str()
+         return s
+ 
+@@ -242,17 +242,7 @@ class Genus2reduction(SageObject):
+         sage: factor(R.conductor)
+         5^4 * 2267
+ 
+-    This means that only the odd part of the conductor is known.
+-
+-    ::
+-
+-        sage: R.prime_to_2_conductor_only
+-        True
+-
+-    The discriminant is always minimal away from 2, but possibly not at
+-    2.
+-
+-    ::
++    The discriminant is always minimal::
+ 
+         sage: factor(R.minimal_disc)
+         2^3 * 5^5 * 2267
+@@ -264,10 +254,10 @@ class Genus2reduction(SageObject):
+         sage: R
+         Reduction data about this proper smooth genus 2 curve:
+             y^2 + (x^3 - 2*x^2 - 2*x + 1)*y = -5*x^5
+-        A Minimal Equation (away from 2):
+-            y^2 = x^6 - 240*x^4 - 2550*x^3 - 11400*x^2 - 24100*x - 19855
+-        Minimal Discriminant (away from 2):  56675000
+-        Conductor (away from 2): 1416875
++        A Minimal Equation:
++            y^2 ...
++        Minimal Discriminant: 56675000
++        Conductor: 1416875
+         Local Data:
+             p=2
+             (potential) stable reduction:  (II), j=1
+@@ -293,10 +283,10 @@ class Genus2reduction(SageObject):
+         sage: genus2reduction(0, x^6 + 3*x^3 + 63)
+         Reduction data about this proper smooth genus 2 curve:
+                 y^2 = x^6 + 3*x^3 + 63
+-        A Minimal Equation (away from 2):
+-                y^2 = x^6 + 3*x^3 + 63
+-        Minimal Discriminant (away from 2):  10628388316852992
+-        Conductor (away from 2): 2893401
++        A Minimal Equation:
++                y^2 ...
++        Minimal Discriminant: -10628388316852992
++        Conductor: 2893401
+         Local Data:
+                 p=2
+                 (potential) stable reduction:  (V), j1+j2=0, j1*j2=0
+@@ -327,9 +317,9 @@ class Genus2reduction(SageObject):
+         sage: genus2reduction(x^3-x^2-1, x^2 - x)
+         Reduction data about this proper smooth genus 2 curve:
+                 y^2 + (x^3 - x^2 - 1)*y = x^2 - x
+-        A Minimal Equation (away from 2):
+-                y^2 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 
503516*x + 808561
+-        Minimal Discriminant (away from 2):  169
++        A Minimal Equation:
++                y^2 ...
++        Minimal Discriminant: -169
+         Conductor: 169
+         Local Data:
+                 p=13
+@@ -370,10 +360,10 @@ class Genus2reduction(SageObject):
+             sage: genus2reduction(x^3 - 2*x^2 - 2*x + 1, -5*x^5)
+             Reduction data about this proper smooth genus 2 curve:
+                     y^2 + (x^3 - 2*x^2 - 2*x + 1)*y = -5*x^5
+-            A Minimal Equation (away from 2):
+-                    y^2 = x^6 - 240*x^4 - 2550*x^3 - 11400*x^2 - 24100*x - 
19855
+-            Minimal Discriminant (away from 2):  56675000
+-            Conductor (away from 2): 1416875
++            A Minimal Equation:
++                    y^2 ...
++            Minimal Discriminant: 56675000
++            Conductor: 1416875
+             Local Data:
+                     p=2
+                     (potential) stable reduction:  (II), j=1
+@@ -389,9 +379,9 @@ class Genus2reduction(SageObject):
+             sage: genus2reduction(x^2 + 1, -5*x^5)
+             Reduction data about this proper smooth genus 2 curve:
+                     y^2 + (x^2 + 1)*y = -5*x^5
+-            A Minimal Equation (away from 2):
+-                    y^2 = -20*x^5 + x^4 + 2*x^2 + 1
+-            Minimal Discriminant (away from 2):  48838125
++            A Minimal Equation:
++                    y^2 ...
++            Minimal Discriminant: 48838125
+             Conductor: 32025
+             Local Data:
+                     p=3
+@@ -412,9 +402,9 @@ class Genus2reduction(SageObject):
+             sage: genus2reduction(x^3 + x^2 + x,-2*x^5 + 3*x^4 - x^3 - x^2 - 
6*x - 2)
+             Reduction data about this proper smooth genus 2 curve:
+                     y^2 + (x^3 + x^2 + x)*y = -2*x^5 + 3*x^4 - x^3 - x^2 - 
6*x - 2
+-            A Minimal Equation (away from 2):
+-                    y^2 = x^6 + 18*x^3 + 36*x^2 - 27
+-            Minimal Discriminant (away from 2):  1520984142
++            A Minimal Equation:
++                    y^2 ...
++            Minimal Discriminant: 1520984142
+             Conductor: 954
+             Local Data:
+                     p=2
+@@ -436,18 +426,10 @@ class Genus2reduction(SageObject):
+             raise ValueError("Q (=%s) must have degree at most 3" % Q)
+ 
+         res = pari.genus2red([P, Q])
+-
+         conductor = ZZ(res[0])
+-        minimal_equation = R(res[2])
+-
+-        minimal_disc = QQ(res[2].poldisc()).abs()
+-        if minimal_equation.degree() == 5:
+-            minimal_disc *= minimal_equation[5]**2
+-        # Multiply with suitable power of 2 of the form 2^(2*(d-1) - 12)
+-        b = 2 * (minimal_equation.degree() - 1)
+-        k = QQ((12 - minimal_disc.valuation(2), b)).ceil()
+-        minimal_disc >>= 12 - b*k
+-        minimal_disc = ZZ(minimal_disc)
++        Pmin = R(res[2][0])
++        Qmin = R(res[2][1])
++        minimal_disc = ZZ(pari.hyperelldisc(res[2]))
+ 
+         local_data = {}
+         for red in res[3]:
+@@ -468,9 +450,7 @@ class Genus2reduction(SageObject):
+ 
+             local_data[p] = data
+ 
+-        prime_to_2_conductor_only = (-1 in res[1].component(2))
+-        return ReductionData(res, P, Q, minimal_equation, minimal_disc, 
local_data,
+-                             conductor, prime_to_2_conductor_only)
++        return ReductionData(res, P, Q, Pmin, Qmin, minimal_disc, local_data, 
conductor)
+ 
+     def __reduce__(self):
+         return _reduce_load_genus2reduction, tuple([])
+diff --git a/src/sage/lfunctions/dokchitser.py 
b/src/sage/lfunctions/dokchitser.py
+index fec450d7bc..236402c293 100644
+--- a/src/sage/lfunctions/dokchitser.py
++++ b/src/sage/lfunctions/dokchitser.py
+@@ -337,6 +337,7 @@ class Dokchitser(SageObject):
+             # After init_coeffs is called, future calls to this method should
+             # return the full output for further parsing
+             raise RuntimeError("unable to create L-series, due to precision 
or other limits in PARI")
++        t = t.replace("  *** _^_: Warning: normalizing a series with 0 
leading term.\n", "")
+         return t
+ 
+     def __check_init(self):
+diff --git a/src/sage/lfunctions/pari.py b/src/sage/lfunctions/pari.py
+index d2b20f1891..6c31efe239 100644
+--- a/src/sage/lfunctions/pari.py
++++ b/src/sage/lfunctions/pari.py
+@@ -339,7 +339,7 @@ def lfun_eta_quotient(scalings, exponents):
+         0.0374412812685155
+ 
+         sage: lfun_eta_quotient([6],[4])
+-        [[Vecsmall([7]), [Vecsmall([6]), Vecsmall([4])]], 0, [0, 1], 2, 36, 1]
++        [[Vecsmall([7]), [Vecsmall([6]), Vecsmall([4]), 0]], 0, [0, 1], 2, 
36, 1]
+ 
+         sage: lfun_eta_quotient([2,1,4], [5,-2,-2])
+         Traceback (most recent call last):
+diff --git a/src/sage/libs/pari/tests.py b/src/sage/libs/pari/tests.py
+index e5a2aa2517..0efcb15de0 100644
+--- a/src/sage/libs/pari/tests.py
++++ b/src/sage/libs/pari/tests.py
+@@ -356,7 +356,7 @@ Constructors::
+     [2, 4]~*x + [1, 3]~
+ 
+     sage: pari(3).Qfb(7, 1)
+-    Qfb(3, 7, 1, 0.E-19)
++    Qfb(3, 7, 1)
+     sage: pari(3).Qfb(7, 2)
+     Traceback (most recent call last):
+     ...
+@@ -512,7 +512,7 @@ Basic functions::
+     sage: pari('sqrt(-2)').frac()
+     Traceback (most recent call last):
+     ...
+-    PariError: incorrect type in gfloor (t_COMPLEX)
++    PariError: incorrect type in gfrac (t_COMPLEX)
+ 
+     sage: pari('1+2*I').imag()
+     2
+diff --git a/src/sage/modular/cusps_nf.py b/src/sage/modular/cusps_nf.py
+index 25d93cac92..157ebabe29 100644
+--- a/src/sage/modular/cusps_nf.py
++++ b/src/sage/modular/cusps_nf.py
+@@ -1220,7 +1220,7 @@ def units_mod_ideal(I):
+         sage: I = k.ideal(5, a + 1)
+         sage: units_mod_ideal(I)
+         [1,
+-        2*a^2 + 4*a - 1,
++        -2*a^2 - 4*a + 1,
+         ...]
+ 
+     ::
+diff --git 
a/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py 
b/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py
+index a881336596..090d1bfaf0 100644
+--- a/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py
++++ b/src/sage/modular/modform_hecketriangle/hecke_triangle_group_element.py
+@@ -43,7 +43,7 @@ def coerce_AA(p):
+         sage: AA(p)._exact_field()
+         Number Field in a with defining polynomial y^8 ... with a in ...
+         sage: coerce_AA(p)._exact_field()
+-        Number Field in a with defining polynomial y^4 - 1910*y^2 - 3924*y + 
681058 with a in 39.710518724...?
++        Number Field in a with defining polynomial y^4 - 1910*y^2 - 3924*y + 
681058 with a in ...?
+     """
+     el = AA(p)
+     el.simplify()
+diff --git a/src/sage/modular/modsym/p1list_nf.py 
b/src/sage/modular/modsym/p1list_nf.py
+index 222caacca8..f9d969732c 100644
+--- a/src/sage/modular/modsym/p1list_nf.py
++++ b/src/sage/modular/modsym/p1list_nf.py
+@@ -58,7 +58,7 @@ Lift an MSymbol to a matrix in `SL(2, R)`:
+ 
+     sage: alpha = MSymbol(N, a + 2, 3*a^2)
+     sage: alpha.lift_to_sl2_Ok()
+-    [-3*a^2 + a + 12, 25*a^2 - 50*a + 100, a + 2, a^2 - 3*a + 3]
++    [-1, 4*a^2 - 13*a + 23, a + 2, 5*a^2 + 3*a - 3]
+     sage: Ok = k.ring_of_integers()
+     sage: M = Matrix(Ok, 2, alpha.lift_to_sl2_Ok())
+     sage: det(M)
+@@ -945,11 +945,11 @@ class P1NFList(SageObject):
+             sage: N = k.ideal(5, a + 1)
+             sage: P = P1NFList(N)
+             sage: u = k.unit_group().gens_values(); u
+-            [-1, 2*a^2 + 4*a - 1]
++            [-1, -2*a^2 - 4*a + 1]
+             sage: P.apply_J_epsilon(4, -1)
+             2
+             sage: P.apply_J_epsilon(4, u[0], u[1])
+-            1
++            5
+ 
+         ::
+ 
+diff --git a/src/sage/modules/free_quadratic_module_integer_symmetric.py 
b/src/sage/modules/free_quadratic_module_integer_symmetric.py
+index a206f0c721..aeb19ab669 100644
+--- a/src/sage/modules/free_quadratic_module_integer_symmetric.py
++++ b/src/sage/modules/free_quadratic_module_integer_symmetric.py
+@@ -1168,11 +1168,11 @@ class 
FreeQuadraticModule_integer_symmetric(FreeQuadraticModule_submodule_with_b
+             sage: A4 = IntegralLattice("A4")
+             sage: Aut = A4.orthogonal_group()
+             sage: Aut
+-            Group of isometries with 5 generators (
+-            [-1  0  0  0]  [0 0 0 1]  [-1 -1 -1  0]  [ 1  0  0  0]  [ 1  0  0 
 0]
+-            [ 0 -1  0  0]  [0 0 1 0]  [ 0  0  0 -1]  [-1 -1 -1 -1]  [ 0  1  0 
 0]
+-            [ 0  0 -1  0]  [0 1 0 0]  [ 0  0  1  1]  [ 0  0  0  1]  [ 0  0  1 
 1]
+-            [ 0  0  0 -1], [1 0 0 0], [ 0  1  0  0], [ 0  0  1  0], [ 0  0  0 
-1]
++            Group of isometries with 4 generators (
++            [0 0 0 1]  [-1 -1 -1  0]  [ 1  0  0  0]  [ 1  0  0  0]
++            [0 0 1 0]  [ 0  0  0 -1]  [-1 -1 -1 -1]  [ 0  1  0  0]
++            [0 1 0 0]  [ 0  0  1  1]  [ 0  0  0  1]  [ 0  0  1  1]
++            [1 0 0 0], [ 0  1  0  0], [ 0  0  1  0], [ 0  0  0 -1]
+             )
+ 
+         The group acts from the right on the lattice and its discriminant 
group::
+@@ -1180,19 +1180,19 @@ class 
FreeQuadraticModule_integer_symmetric(FreeQuadraticModule_submodule_with_b
+             sage: x = A4.an_element()
+             sage: g = Aut.an_element()
+             sage: g
+-            [ 1  1  1  0]
+-            [ 0  0 -1  0]
+-            [ 0  0  1  1]
+-            [ 0 -1 -1 -1]
++            [-1 -1 -1  0]
++            [ 0  0  1  0]
++            [ 0  0 -1 -1]
++            [ 0  1  1  1]
+             sage: x*g
+-            (1, 1, 1, 0)
++            (-1, -1, -1, 0)
+             sage: (x*g).parent()==A4
+             True
+             sage: (g*x).parent()
+             Vector space of dimension 4 over Rational Field
+             sage: y = A4.discriminant_group().an_element()
+             sage: y*g
+-            (1)
++            (4)
+ 
+         If the group is finite we can compute the usual things::
+ 
+@@ -1208,10 +1208,10 @@ class 
FreeQuadraticModule_integer_symmetric(FreeQuadraticModule_submodule_with_b
+ 
+             sage: A2 = 
IntegralLattice(matrix.identity(3),Matrix(ZZ,2,3,[1,-1,0,0,1,-1]))
+             sage: A2.orthogonal_group()
+-            Group of isometries with 3 generators (
+-            [-1/3  2/3  2/3]  [ 2/3  2/3 -1/3]  [1 0 0]
+-            [ 2/3 -1/3  2/3]  [ 2/3 -1/3  2/3]  [0 0 1]
+-            [ 2/3  2/3 -1/3], [-1/3  2/3  2/3], [0 1 0]
++            Group of isometries with 2 generators (
++            [ 2/3  2/3 -1/3]  [1 0 0]
++            [ 2/3 -1/3  2/3]  [0 0 1]
++            [-1/3  2/3  2/3], [0 1 0]
+             )
+ 
+         It can be negative definite as well::
+diff --git a/src/sage/quadratic_forms/binary_qf.py 
b/src/sage/quadratic_forms/binary_qf.py
+index cfa3ada73e..5ac823bc6c 100755
+--- a/src/sage/quadratic_forms/binary_qf.py
++++ b/src/sage/quadratic_forms/binary_qf.py
+@@ -141,7 +141,7 @@ class BinaryQF(SageObject):
+                   and a.degree() == 2 and a.parent().ngens() == 2):
+                 x, y = a.parent().gens()
+                 a, b, c = [a.monomial_coefficient(mon) for mon in [x**2, x*y, 
y**2]]
+-            elif isinstance(a, pari_gen) and a.type() in ('t_QFI', 't_QFR'):
++            elif isinstance(a, pari_gen) and a.type() in ('t_QFI', 't_QFR', 
't_QFB'):
+                 # a has 3 or 4 components
+                 a, b, c = a[0], a[1], a[2]
+         try:
+diff --git a/src/sage/quadratic_forms/genera/genus.py 
b/src/sage/quadratic_forms/genera/genus.py
+index 8290b6c4fa..0fc43f33c6 100644
+--- a/src/sage/quadratic_forms/genera/genus.py
++++ b/src/sage/quadratic_forms/genera/genus.py
+@@ -3088,8 +3088,8 @@ class GenusSymbol_global_ring():
+             sage: G = Genus(matrix(ZZ, 3, [6,3,0, 3,6,0, 0,0,2]))
+             sage: G.representatives()
+             (
+-            [2 0 0]  [ 2 -1  0]
+-            [0 6 3]  [-1  2  0]
++            [2 0 0]  [ 2  1  0]
++            [0 6 3]  [ 1  2  0]
+             [0 3 6], [ 0  0 18]
+             )
+ 
+diff --git a/src/sage/quadratic_forms/qfsolve.py 
b/src/sage/quadratic_forms/qfsolve.py
+index ddde95e04f..d5e15d9f83 100644
+--- a/src/sage/quadratic_forms/qfsolve.py
++++ b/src/sage/quadratic_forms/qfsolve.py
+@@ -70,7 +70,7 @@ def qfsolve(G):
+ 
+         sage: M = Matrix(QQ, [[3, 0, 0, 0], [0, 5, 0, 0], [0, 0, -7, 0], [0, 
0, 0, -11]])
+         sage: qfsolve(M)
+-        (3, -4, -3, -2)
++        (3, 4, -3, -2)
+     """
+     ret = G.__pari__().qfsolve()
+     if ret.type() == 't_COL':
+diff --git a/src/sage/quadratic_forms/quadratic_form__automorphisms.py 
b/src/sage/quadratic_forms/quadratic_form__automorphisms.py
+index c36c667e3b..3d72cf3be1 100644
+--- a/src/sage/quadratic_forms/quadratic_form__automorphisms.py
++++ b/src/sage/quadratic_forms/quadratic_form__automorphisms.py
+@@ -300,9 +300,9 @@ def automorphism_group(self):
+         sage: Q = DiagonalQuadraticForm(ZZ, [1,1,1])
+         sage: Q.automorphism_group()
+         Matrix group over Rational Field with 3 generators (
+-        [-1  0  0]  [0 0 1]  [ 0  0  1]
+-        [ 0 -1  0]  [0 1 0]  [-1  0  0]
+-        [ 0  0 -1], [1 0 0], [ 0  1  0]
++        [ 0  0  1]  [1 0 0]  [ 1  0  0]
++        [-1  0  0]  [0 0 1]  [ 0 -1  0]
++        [ 0  1  0], [0 1 0], [ 0  0  1]
+         )
+ 
+     ::
+diff --git a/src/sage/rings/finite_rings/finite_field_prime_modn.py 
b/src/sage/rings/finite_rings/finite_field_prime_modn.py
+index 9129ecb56a..d5a4cb8f22 100644
+--- a/src/sage/rings/finite_rings/finite_field_prime_modn.py
++++ b/src/sage/rings/finite_rings/finite_field_prime_modn.py
+@@ -111,7 +111,7 @@ class FiniteField_prime_modn(FiniteField_generic, 
integer_mod_ring.IntegerModRin
+             sage: RF13 = K.residue_field(pp)
+             sage: RF13.hom([GF(13)(1)])
+             Ring morphism:
+-             From: Residue field of Fractional ideal (w + 18)
++             From: Residue field of Fractional ideal (-w - 18)
+              To:   Finite Field of size 13
+              Defn: 1 |--> 1
+ 
+diff --git a/src/sage/rings/finite_rings/residue_field.pyx 
b/src/sage/rings/finite_rings/residue_field.pyx
+index 7596f2a302..1e1869f1b1 100644
+--- a/src/sage/rings/finite_rings/residue_field.pyx
++++ b/src/sage/rings/finite_rings/residue_field.pyx
+@@ -20,13 +20,13 @@ monogenic (i.e., 2 is an essential discriminant divisor)::
+ 
+     sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8)
+     sage: F = K.factor(2); F
+-    (Fractional ideal (1/2*a^2 - 1/2*a + 1)) * (Fractional ideal (-a^2 + 2*a 
- 3)) * (Fractional ideal (-3/2*a^2 + 5/2*a - 4))
++    (Fractional ideal (-1/2*a^2 + 1/2*a - 1)) * (Fractional ideal (-a^2 + 2*a 
- 3)) * (Fractional ideal (3/2*a^2 - 5/2*a + 4))
+     sage: F[0][0].residue_field()
+-    Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
++    Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
+     sage: F[1][0].residue_field()
+     Residue field of Fractional ideal (-a^2 + 2*a - 3)
+     sage: F[2][0].residue_field()
+-    Residue field of Fractional ideal (-3/2*a^2 + 5/2*a - 4)
++    Residue field of Fractional ideal (3/2*a^2 - 5/2*a + 4)
+ 
+ We can also form residue fields from `\ZZ`::
+ 
+@@ -258,9 +258,9 @@ class ResidueFieldFactory(UniqueFactory):
+     the index of ``ZZ[a]`` in the maximal order for all ``a``::
+ 
+         sage: K.<a> = NumberField(x^3 + x^2 - 2*x + 8); P = 
K.ideal(2).factor()[0][0]; P
+-        Fractional ideal (1/2*a^2 - 1/2*a + 1)
++        Fractional ideal (-1/2*a^2 + 1/2*a - 1)
+         sage: F = K.residue_field(P); F
+-        Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
++        Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
+         sage: F(a)
+         0
+         sage: B = K.maximal_order().basis(); B
+@@ -270,7 +270,7 @@ class ResidueFieldFactory(UniqueFactory):
+         sage: F(B[2])
+         0
+         sage: F
+-        Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
++        Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
+         sage: F.degree()
+         1
+ 
+@@ -730,15 +730,15 @@ class ResidueField_generic(Field):
+         EXAMPLES::
+ 
+             sage: I = QQ[3^(1/3)].factor(5)[1][0]; I
+-            Fractional ideal (-a + 2)
++            Fractional ideal (a - 2)
+             sage: k = I.residue_field(); k
+-            Residue field of Fractional ideal (-a + 2)
++            Residue field of Fractional ideal (a - 2)
+             sage: f = k.lift_map(); f
+             Lifting map:
+-              From: Residue field of Fractional ideal (-a + 2)
++              From: Residue field of Fractional ideal (a - 2)
+               To:   Maximal Order in Number Field in a with defining 
polynomial x^3 - 3 with a = 1.442249570307409?
+             sage: f.domain()
+-            Residue field of Fractional ideal (-a + 2)
++            Residue field of Fractional ideal (a - 2)
+             sage: f.codomain()
+             Maximal Order in Number Field in a with defining polynomial x^3 - 
3 with a = 1.442249570307409?
+             sage: f(k.0)
+@@ -768,7 +768,7 @@ class ResidueField_generic(Field):
+ 
+             sage: K.<a> = NumberField(x^3-11)
+             sage: F = K.ideal(37).factor(); F
+-            (Fractional ideal (37, a + 9)) * (Fractional ideal (37, a + 12)) 
* (Fractional ideal (2*a - 5))
++            (Fractional ideal (37, a + 9)) * (Fractional ideal (37, a + 12)) 
* (Fractional ideal (-2*a + 5))
+             sage: k = K.residue_field(F[0][0])
+             sage: l = K.residue_field(F[1][0])
+             sage: k == l
+@@ -846,7 +846,7 @@ cdef class ReductionMap(Map):
+             sage: F.reduction_map()
+             Partially defined reduction map:
+               From: Number Field in a with defining polynomial x^3 + x^2 - 
2*x + 8
+-              To:   Residue field of Fractional ideal (1/2*a^2 - 1/2*a + 1)
++              To:   Residue field of Fractional ideal (-1/2*a^2 + 1/2*a - 1)
+ 
+             sage: K.<theta_5> = CyclotomicField(5)
+             sage: F = K.factor(7)[0][0].residue_field()
+diff --git a/src/sage/rings/number_field/S_unit_solver.py 
b/src/sage/rings/number_field/S_unit_solver.py
+index e99dff850f..759cbfb334 100644
+--- a/src/sage/rings/number_field/S_unit_solver.py
++++ b/src/sage/rings/number_field/S_unit_solver.py
+@@ -1781,20 +1781,20 @@ def sieve_ordering(SUK, q):
+         sage: SUK = K.S_unit_group(S=3)
+         sage: sieve_data = list(sieve_ordering(SUK, 19))
+         sage: sieve_data[0]
+-        (Fractional ideal (xi - 3),
+-         Fractional ideal (-2*xi^2 + 3),
++        (Fractional ideal (-2*xi^2 + 3),
++         Fractional ideal (-xi + 3),
+          Fractional ideal (2*xi + 1))
+ 
+         sage: sieve_data[1]
+-        (Residue field of Fractional ideal (xi - 3),
+-         Residue field of Fractional ideal (-2*xi^2 + 3),
++        (Residue field of Fractional ideal (-2*xi^2 + 3),
++         Residue field of Fractional ideal (-xi + 3),
+          Residue field of Fractional ideal (2*xi + 1))
+ 
+         sage: sieve_data[2]
+-        ([18, 7, 16, 4], [18, 9, 12, 8], [18, 3, 10, 10])
++        ([18, 12, 16, 8], [18, 16, 10, 4], [18, 10, 12, 10])
+ 
+         sage: sieve_data[3]
+-        (486, 648, 11664)
++        (648, 2916, 3888)
+     """
+ 
+     K = SUK.number_field()
+diff --git a/src/sage/rings/number_field/bdd_height.py 
b/src/sage/rings/number_field/bdd_height.py
+index beb047ae02..b7c8c33d0b 100644
+--- a/src/sage/rings/number_field/bdd_height.py
++++ b/src/sage/rings/number_field/bdd_height.py
+@@ -248,7 +248,7 @@ def bdd_norm_pr_ideal_gens(K, norm_list):
+         sage: from sage.rings.number_field.bdd_height import 
bdd_norm_pr_ideal_gens
+         sage: K.<g> = QuadraticField(123)
+         sage: bdd_norm_pr_ideal_gens(K, range(5))
+-        {0: [0], 1: [1], 2: [-g - 11], 3: [], 4: [2]}
++        {0: [0], 1: [1], 2: [g + 11], 3: [], 4: [2]}
+ 
+     ::
+ 
+diff --git a/src/sage/rings/number_field/class_group.py 
b/src/sage/rings/number_field/class_group.py
+index 018ff5f5c6..73c0462cd1 100644
+--- a/src/sage/rings/number_field/class_group.py
++++ b/src/sage/rings/number_field/class_group.py
+@@ -221,11 +221,11 @@ class 
FractionalIdealClass(AbelianGroupWithValuesElement):
+             Class group of order 76 with structure C38 x C2
+             of Number Field in a with defining polynomial x^2 + 20072
+             sage: I = (G.0)^11; I
+-            Fractional ideal class (41, 1/2*a + 5)
++            Fractional ideal class (33, 1/2*a + 8)
+             sage: J = G(I.ideal()^5); J
+-            Fractional ideal class (115856201, 1/2*a + 40407883)
++            Fractional ideal class (39135393, 1/2*a + 13654253)
+             sage: J.reduce()
+-            Fractional ideal class (57, 1/2*a + 44)
++            Fractional ideal class (73, 1/2*a + 47)
+             sage: J == I^5
+             True
+         """
+diff --git a/src/sage/rings/number_field/galois_group.py 
b/src/sage/rings/number_field/galois_group.py
+index 79acd053bb..e060148e4d 100644
+--- a/src/sage/rings/number_field/galois_group.py
++++ b/src/sage/rings/number_field/galois_group.py
+@@ -944,7 +944,7 @@ class GaloisGroup_v2(GaloisGroup_perm):
+             sage: K.<b> = NumberField(x^4 - 2*x^2 + 2, 'a').galois_closure()
+             sage: G = K.galois_group()
+             sage: [G.artin_symbol(P) for P in K.primes_above(7)]
+-            [(1,5)(2,6)(3,7)(4,8), (1,5)(2,6)(3,7)(4,8), 
(1,4)(2,3)(5,8)(6,7), (1,4)(2,3)(5,8)(6,7)]
++            [(1,4)(2,3)(5,8)(6,7), (1,4)(2,3)(5,8)(6,7), 
(1,5)(2,6)(3,7)(4,8), (1,5)(2,6)(3,7)(4,8)]
+             sage: G.artin_symbol(17)
+             Traceback (most recent call last):
+             ...
+diff --git a/src/sage/rings/number_field/number_field.py 
b/src/sage/rings/number_field/number_field.py
+index 58463d570d..ff65634e99 100644
+--- a/src/sage/rings/number_field/number_field.py
++++ b/src/sage/rings/number_field/number_field.py
+@@ -3643,7 +3643,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+             sage: L.<b> = K.extension(x^2 - 3, x^2 + 1)
+             sage: M.<c> = L.extension(x^2 + 1)
+             sage: L.ideal(K.ideal(2, a))
+-            Fractional ideal (-a)
++            Fractional ideal (a)
+             sage: M.ideal(K.ideal(2, a)) == M.ideal(a*(b - c)/2)
+             True
+ 
+@@ -4227,7 +4227,8 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+             (y^2 + 6, Mod(1/6*y, y^2 + 6), Mod(6*y, y^2 + 1/6))
+         """
+         f = self.absolute_polynomial()._pari_with_name('y')
+-        if f.pollead() == f.content().denominator() == 1:
++        f = f * f.content().denominator()
++        if f.pollead() == 1:
+             g = f
+             alpha = beta = g.variable().Mod(g)
+         else:
+@@ -4821,7 +4822,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+ 
+             sage: K.<a> = NumberField(2*x^2 - 1/3)
+             sage: K._S_class_group_and_units(tuple(K.primes_above(2) + 
K.primes_above(3)))
+-            ([-6*a + 2, 6*a + 3, -1, 12*a + 5], [])
++            ([6*a + 2, 6*a + 3, -1, -12*a + 5], [])
+         """
+         K_pari = self.pari_bnf(proof=proof)
+         S_pari = [p.pari_prime() for p in sorted(set(S))]
+@@ -5166,7 +5167,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+ 
+             sage: [K.ideal(g).factor() for g in gens]
+             [(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
+-            Fractional ideal (-a),
++            Fractional ideal (a),
+             (Fractional ideal (2, a + 1))^2,
+             1]
+ 
+@@ -5751,7 +5752,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+             sage: K.elements_of_norm(3)
+             []
+             sage: K.elements_of_norm(50)
+-            [-7*a + 1, 5*a - 5, 7*a + 1]
++            [-a - 7, 5*a - 5, 7*a + 1]
+ 
+         TESTS:
+ 
+@@ -5863,7 +5864,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+             sage: K.factor(1+a)
+             Fractional ideal (a + 1)
+             sage: K.factor(1+a/5)
+-            (Fractional ideal (a + 1)) * (Fractional ideal (-a - 2))^-1 * 
(Fractional ideal (2*a + 1))^-1 * (Fractional ideal (-3*a - 2))
++            (Fractional ideal (a + 1)) * (Fractional ideal (-a - 2))^-1 * 
(Fractional ideal (2*a + 1))^-1 * (Fractional ideal (-2*a + 3))
+ 
+         An example over a relative number field::
+ 
+@@ -6460,9 +6461,9 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+             sage: new_basis = k.reduced_basis(prec=120)
+             sage: [c.minpoly() for c in new_basis]
+             [x - 1,
+-             x^2 - x + 1,
++             x^2 + x + 1,
++             x^6 + 3*x^5 - 102*x^4 - 103*x^3 + 10572*x^2 - 59919*x + 127657,
+              x^6 + 3*x^5 - 102*x^4 - 103*x^3 + 10572*x^2 - 59919*x + 127657,
+-             x^6 - 3*x^5 - 102*x^4 + 315*x^3 + 10254*x^2 - 80955*x + 198147,
+              x^3 - 171*x + 848,
+              x^6 + 171*x^4 + 1696*x^3 + 29241*x^2 + 145008*x + 719104]
+             sage: R = k.order(new_basis)
+@@ -7058,7 +7059,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+              -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - 
a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2,
+              -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 
- 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4,
+              a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 
4*a^3 - 3*a^2 - 2*a + 2,
+-             -a^14 - a^13 + a^12 + 2*a^10 + a^8 - 2*a^7 - 2*a^6 + 2*a^3 - a^2 
+ 2*a - 2)
++             2*a^16 + a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 
7*a^5 - 8*a^4 - 6*a^3 - 5*a^2 - 6*a - 7)
+ 
+         TESTS:
+ 
+@@ -7067,7 +7068,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+ 
+             sage: K.<a> = NumberField(1/2*x^2 - 1/6)
+             sage: K.units()
+-            (-3*a + 2,)
++            (3*a - 2,)
+         """
+         proof = proof_flag(proof)
+ 
+@@ -7146,7 +7147,7 @@ class NumberField_generic(WithEqualityById, 
number_field_base.NumberField):
+             sage: U.gens()
+             (u0, u1, u2, u3, u4, u5, u6, u7, u8)
+             sage: U.gens_values()  # result not independently verified
+-            [-1, -a^9 - a + 1, -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 
- a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1, 2*a^16 - a^14 - a^13 + 3*a^12 - 
2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, a^15 + 
a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -a^16 - 
a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - 
a^3 - a^2 + 2, -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 
- 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4, a^15 - a^12 + a^10 - 
a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, -a^14 - a^13 
+ a^12 + 2*a^10 + a^8 - 2*a^7 - 2*a^6 + 2*a^3 - a^2 + 2*a - 2]
++            [-1, -a^9 - a + 1, -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 
- a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1, 2*a^16 - a^14 - a^13 + 3*a^12 - 
2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, a^15 + 
a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -a^16 - 
a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - 
a^3 - a^2 + 2, -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 
- 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4, a^15 - a^12 + a^10 - 
a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, 2*a^16 + 
a^15 - a^11 - 3*a^10 - 4*a^9 - 4*a^8 - 4*a^7 - 5*a^6 - 7*a^5 - 8*a^4 - 6*a^3 - 
5*a^2 - 6*a - 7]
+         """
+         proof = proof_flag(proof)
+ 
+diff --git a/src/sage/rings/number_field/number_field_element.pyx 
b/src/sage/rings/number_field/number_field_element.pyx
+index 784c239dc1..aa740069dc 100644
+--- a/src/sage/rings/number_field/number_field_element.pyx
++++ b/src/sage/rings/number_field/number_field_element.pyx
+@@ -4446,7 +4446,7 @@ cdef class NumberFieldElement(FieldElement):
+             sage: f = Qi.embeddings(K)[0]
+             sage: a = f(2+3*i) * (2-zeta)^2
+             sage: a.descend_mod_power(Qi,2)
+-            [-3*i - 2, -2*i + 3]
++            [-2*i + 3, 3*i + 2]
+ 
+         An absolute example::
+ 
+@@ -5124,7 +5124,7 @@ cdef class 
NumberFieldElement_relative(NumberFieldElement):
+         EXAMPLES::
+ 
+             sage: K.<a, b, c> = NumberField([x^2 - 2, x^2 - 3, x^2 - 5])
+-            sage: P = K.prime_factors(5)[0]
++            sage: P = K.prime_factors(5)[1]
+             sage: (2*a + b - c).valuation(P)
+             1
+         """
+diff --git a/src/sage/rings/number_field/number_field_ideal.py 
b/src/sage/rings/number_field/number_field_ideal.py
+index 5f587556a4..33481fead0 100644
+--- a/src/sage/rings/number_field/number_field_ideal.py
++++ b/src/sage/rings/number_field/number_field_ideal.py
+@@ -3355,7 +3355,7 @@ def quotient_char_p(I, p):
+         []
+ 
+         sage: I = K.factor(13)[0][0]; I
+-        Fractional ideal (-3*i - 2)
++        Fractional ideal (-2*i + 3)
+         sage: I.residue_class_degree()
+         1
+         sage: quotient_char_p(I, 13)[0]
+diff --git a/src/sage/rings/number_field/number_field_ideal_rel.py 
b/src/sage/rings/number_field/number_field_ideal_rel.py
+index bae36d4b9c..f64bd5b761 100644
+--- a/src/sage/rings/number_field/number_field_ideal_rel.py
++++ b/src/sage/rings/number_field/number_field_ideal_rel.py
+@@ -272,7 +272,7 @@ class 
NumberFieldFractionalIdeal_rel(NumberFieldFractionalIdeal):
+             sage: L.<b> = K.extension(5*x^2 + 1)
+             sage: P = L.primes_above(2)[0]
+             sage: P.gens_reduced()
+-            (2, 15*a*b + 3*a + 1)
++            (2, -15*a*b + 3*a + 1)
+         """
+         try:
+             # Compute the single generator, if it exists
+@@ -401,7 +401,7 @@ class 
NumberFieldFractionalIdeal_rel(NumberFieldFractionalIdeal):
+             sage: L.<b> = K.extension(5*x^2 + 1)
+             sage: P = L.primes_above(2)[0]
+             sage: P.relative_norm()
+-            Fractional ideal (-6*a + 2)
++            Fractional ideal (6*a + 2)
+         """
+         L = self.number_field()
+         K = L.base_field()
+@@ -518,7 +518,7 @@ class 
NumberFieldFractionalIdeal_rel(NumberFieldFractionalIdeal):
+             sage: L.<b> = K.extension(5*x^2 + 1)
+             sage: P = L.primes_above(2)[0]
+             sage: P.ideal_below()
+-            Fractional ideal (-6*a + 2)
++            Fractional ideal (6*a + 2)
+         """
+         L = self.number_field()
+         K = L.base_field()
+diff --git a/src/sage/rings/number_field/number_field_rel.py 
b/src/sage/rings/number_field/number_field_rel.py
+index d33980c4b1..50e846b205 100644
+--- a/src/sage/rings/number_field/number_field_rel.py
++++ b/src/sage/rings/number_field/number_field_rel.py
+@@ -213,14 +213,14 @@ class NumberField_relative(NumberField_generic):
+             sage: l.<b> = k.extension(5*x^2 + 3); l
+             Number Field in b with defining polynomial 5*x^2 + 3 over its 
base field
+             sage: l.pari_rnf()
+-            [x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 - 3/4*y - 
13/4), ..., y^4 + 6*y^2 + 1, x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 
- 3/4*y - 13/4)], [0, 0]]
++            [x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 
17/4*y - 19/4), ..., y^4 + 6*y^2 + 1, x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + 
(-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4)], [0, 0]]
+             sage: b
+             b
+ 
+             sage: l.<b> = k.extension(x^2 + 3/5); l
+             Number Field in b with defining polynomial x^2 + 3/5 over its 
base field
+             sage: l.pari_rnf()
+-            [x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 - 3/4*y - 
13/4), ..., y^4 + 6*y^2 + 1, x^2 + (-1/2*y^2 + y - 3/2)*x + (-1/4*y^3 + 1/4*y^2 
- 3/4*y - 13/4)], [0, 0]]
++            [x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + (-3/4*y^3 - 1/4*y^2 - 
17/4*y - 19/4), ..., y^4 + 6*y^2 + 1, x^2 + (-y^3 + 1/2*y^2 - 6*y + 3/2)*x + 
(-3/4*y^3 - 1/4*y^2 - 17/4*y - 19/4)], [0, 0]]
+             sage: b
+             b
+ 
+diff --git a/src/sage/rings/number_field/order.py 
b/src/sage/rings/number_field/order.py
+index 6eca89ed8d..78ef4c3b33 100644
+--- a/src/sage/rings/number_field/order.py
++++ b/src/sage/rings/number_field/order.py
+@@ -520,7 +520,7 @@ class Order(IntegralDomain, sage.rings.abc.Order):
+             sage: k.<a> = NumberField(x^2 + 5077); G = k.class_group(); G
+             Class group of order 22 with structure C22 of Number Field in a 
with defining polynomial x^2 + 5077
+             sage: G.0 ^ -9
+-            Fractional ideal class (11, a + 7)
++            Fractional ideal class (43, a + 13)
+             sage: Ok = k.maximal_order(); Ok
+             Maximal Order in Number Field in a with defining polynomial x^2 + 
5077
+             sage: Ok * (11, a + 7)
+diff --git a/src/sage/rings/number_field/selmer_group.py 
b/src/sage/rings/number_field/selmer_group.py
+index c534aaa9f6..6bc67565d2 100644
+--- a/src/sage/rings/number_field/selmer_group.py
++++ b/src/sage/rings/number_field/selmer_group.py
+@@ -491,7 +491,7 @@ def pSelmerGroup(K, S, p, proof=None, debug=False):
+ 
+         sage: [K.ideal(g).factor() for g in gens]
+         [(Fractional ideal (2, a + 1)) * (Fractional ideal (3, a + 1)),
+-        Fractional ideal (-a),
++        Fractional ideal (a),
+         (Fractional ideal (2, a + 1))^2,
+         1]
+ 
+diff --git a/src/sage/rings/polynomial/polynomial_quotient_ring.py 
b/src/sage/rings/polynomial/polynomial_quotient_ring.py
+index bb5d8356be..8a7e5fa66f 100644
+--- a/src/sage/rings/polynomial/polynomial_quotient_ring.py
++++ b/src/sage/rings/polynomial/polynomial_quotient_ring.py
+@@ -1791,7 +1791,7 @@ class PolynomialQuotientRing_generic(CommutativeRing):
+             sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1)], 3)
+             [2, a + 1]
+             sage: D.selmer_generators([K.ideal(2, -a+1), K.ideal(3, a+1), 
K.ideal(a)], 3)
+-            [2, a + 1, a]
++            [2, a + 1, -a]
+ 
+         """
+         fields, isos, iso_classes = self._S_decomposition(tuple(S))
+diff --git a/src/sage/rings/qqbar.py b/src/sage/rings/qqbar.py
+index 704b77ce5f..83ee4549e4 100644
+--- a/src/sage/rings/qqbar.py
++++ b/src/sage/rings/qqbar.py
+@@ -312,8 +312,8 @@ and we get a way to produce the number directly::
+     True
+     sage: sage_input(n)
+     R.<y> = QQ[]
+-    v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), 
RIF(RR(0.51763809020504148), RR(0.51763809020504159)))
+-    -109*v^3 - 89*v^2 + 327*v + 178
++    v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), 
RIF(-RR(1.9318516525781366), -RR(1.9318516525781364)))
++    -109*v^3 + 89*v^2 + 327*v - 178
+ 
+ We can also see that some computations (basically, those which are
+ easy to perform exactly) are performed directly, instead of storing
+@@ -362,7 +362,7 @@ algorithms in :trac:`10255`::
+     # Verified
+     R1.<x> = QQbar[]
+     R2.<y> = QQ[]
+-    v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), 
RIF(RR(0.51763809020504148), RR(0.51763809020504159)))
++    v = AA.polynomial_root(AA.common_polynomial(y^4 - 4*y^2 + 1), 
RIF(-RR(1.9318516525781366), -RR(1.9318516525781364)))
+     AA.polynomial_root(AA.common_polynomial(x^4 + QQbar(v^3 - 3*v - 1)*x^3 + 
QQbar(-v^3 + 3*v - 3)*x^2 + QQbar(-3*v^3 + 9*v + 3)*x + QQbar(3*v^3 - 9*v)), 
RIF(RR(0.99999999999999989), RR(1.0000000000000002)))
+     sage: one
+     1
+@@ -2310,7 +2310,7 @@ def do_polred(poly, threshold=32):
+     cost = 2 * bitsize.nbits() + 5 * poly.degree().nbits()
+     if cost > threshold:
+         return parent.gen(), parent.gen(), poly
+-    new_poly, elt_back = poly.__pari__().polredbest(flag=1)
++    new_poly, elt_back = poly.numerator().__pari__().polredbest(flag=1)
+     elt_fwd = elt_back.modreverse()
+     return parent(elt_fwd.lift()), parent(elt_back.lift()), parent(new_poly)
+ 
+@@ -2542,10 +2542,10 @@ def number_field_elements_from_algebraics(numbers, 
minimal=False, same_field=Fal
+            Defn: a |--> 1.414213562373095?)
+ 
+         sage: number_field_elements_from_algebraics((rt2,rt3))
+-        (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, [-a^3 + 
3*a, -a^2 + 2], Ring morphism:
++        (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, [-a^3 + 
3*a, a^2 - 2], Ring morphism:
+             From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1
+             To:   Algebraic Real Field
+-            Defn: a |--> 0.5176380902050415?)
++            Defn: a |--> -1.931851652578137?)
+ 
+     ``rt3a`` is a real number in ``QQbar``.  Ordinarily, we'd get a 
homomorphism
+     to ``AA`` (because all elements are real), but if we specify 
``same_field=True``,
+@@ -2570,7 +2570,7 @@ def number_field_elements_from_algebraics(numbers, 
minimal=False, same_field=Fal
+         (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, -a^3 + 
3*a, Ring morphism:
+             From: Number Field in a with defining polynomial y^4 - 4*y^2 + 1
+             To:   Algebraic Real Field
+-            Defn: a |--> 0.5176380902050415?)
++            Defn: a |--> -1.931851652578137?)
+ 
+     We can specify ``minimal=True`` if we want the smallest number field::
+ 
+@@ -2618,7 +2618,7 @@ def number_field_elements_from_algebraics(numbers, 
minimal=False, same_field=Fal
+         sage: nfI^2
+         -1
+         sage: sum = nfrt2 + nfrt3 + nfI + nfz3; sum
+-        2*a^6 + a^5 - a^4 - a^3 - 2*a^2 - a
++        a^5 + a^4 - a^3 + 2*a^2 - a - 1
+         sage: hom(sum)
+         2.646264369941973? + 1.866025403784439?*I
+         sage: hom(sum) == rt2 + rt3 + qqI + z3
+@@ -2658,7 +2658,7 @@ def number_field_elements_from_algebraics(numbers, 
minimal=False, same_field=Fal
+         sage: nf, nums, hom = number_field_elements_from_algebraics(elems, 
embedded=True)
+         sage: nf
+         Number Field in a with defining polynomial y^24 - 6*y^23 ...- 9*y^2 + 
1
+-          with a = 0.2598678911433438? + 0.0572892247058457?*I
++          with a = 0.2598679? + 0.0572892?*I
+         sage: list(map(QQbar, nums)) == elems == list(map(hom, nums))
+         True
+ 
+@@ -2725,7 +2725,7 @@ def number_field_elements_from_algebraics(numbers, 
minimal=False, same_field=Fal
+                          sqrt(2), AA.polynomial_root(x^3-3, RIF(0,3)), 11/9, 
1]
+         sage: res = number_field_elements_from_algebraics(my_nums, 
embedded=True)
+         sage: res[0]
+-        Number Field in a with defining polynomial y^24 - 107010*y^22 - 
24*y^21 + ... + 250678447193040618624307096815048024318853254384 with a = 
-95.5053039433554?
++        Number Field in a with defining polynomial y^24 - 107010*y^22 - 
24*y^21 + ... + 250678447193040618624307096815048024318853254384 with a = 
93.32530798172420?
+     """
+     gen = qq_generator
+ 
+@@ -3129,7 +3129,7 @@ class AlgebraicGenerator(SageObject):
+             sage: root = ANRoot(x^2 - x - 1, RIF(1, 2))
+             sage: gen = AlgebraicGenerator(nf, root)
+             sage: gen.pari_field()
+-             [y^2 - y - 1, [2, 0], ...]
++            [[y^2 - y - 1, [2, 0], ...]
+         """
+         if self.is_trivial():
+             raise ValueError("No PARI field attached to trivial generator")
+@@ -3213,7 +3213,7 @@ class AlgebraicGenerator(SageObject):
+             sage: qq_generator.union(gen3) is gen3
+             True
+             sage: gen2.union(gen3)
+-            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in 0.5176380902050415?
++            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in -1.931851652578137?
+         """
+         if self._trivial:
+             return other
+@@ -3306,13 +3306,13 @@ class AlgebraicGenerator(SageObject):
+             Number Field in a with defining polynomial y^2 - 3 with a in 
1.732050807568878?
+             sage: gen2_3 = gen2.union(gen3)
+             sage: gen2_3
+-            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in 0.5176380902050415?
++            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in -1.931851652578137?
+             sage: qq_generator.super_poly(gen2) is None
+             True
+             sage: gen2.super_poly(gen2_3)
+             -a^3 + 3*a
+             sage: gen3.super_poly(gen2_3)
+-            -a^2 + 2
++            a^2 - 2
+ 
+         """
+         if checked is None:
+@@ -3360,13 +3360,13 @@ class AlgebraicGenerator(SageObject):
+             sage: sqrt3 = ANExtensionElement(gen3, nf3.gen())
+             sage: gen2_3 = gen2.union(gen3)
+             sage: gen2_3
+-            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in 0.5176380902050415?
++            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in -1.931851652578137?
+             sage: gen2_3(sqrt2)
+             -a^3 + 3*a
+             sage: gen2_3(ANRational(1/7))
+             1/7
+             sage: gen2_3(sqrt3)
+-            -a^2 + 2
++            a^2 - 2
+         """
+         if self._trivial:
+             return elt._value
+@@ -4336,10 +4336,10 @@ class 
AlgebraicNumber_base(sage.structure.element.FieldElement):
+             sage: rt3 = AA(sqrt(3))
+             sage: rt3b = rt2 + rt3 - rt2
+             sage: rt3b.as_number_field_element()
+-            (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, -a^2 
+ 2, Ring morphism:
++            (Number Field in a with defining polynomial y^4 - 4*y^2 + 1, a^2 
- 2, Ring morphism:
+                 From: Number Field in a with defining polynomial y^4 - 4*y^2 
+ 1
+                 To:   Algebraic Real Field
+-                Defn: a |--> 0.5176380902050415?)
++                Defn: a |--> -1.931851652578137?)
+             sage: rt3b.as_number_field_element(minimal=True)
+             (Number Field in a with defining polynomial y^2 - 3, a, Ring 
morphism:
+                From: Number Field in a with defining polynomial y^2 - 3
+@@ -4401,7 +4401,7 @@ class 
AlgebraicNumber_base(sage.structure.element.FieldElement):
+             sage: rt2b = rt3 + rt2 - rt3
+             sage: rt2b.exactify()
+             sage: rt2b._exact_value()
+-            a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137?
++            a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
+             sage: rt2b.simplify()
+             sage: rt2b._exact_value()
+             a where a^2 - 2 = 0 and a in 1.414213562373095?
+@@ -4422,7 +4422,7 @@ class 
AlgebraicNumber_base(sage.structure.element.FieldElement):
+             sage: QQbar(2)._exact_field()
+             Trivial generator
+             sage: (sqrt(QQbar(2)) + sqrt(QQbar(19)))._exact_field()
+-            Number Field in a with defining polynomial y^4 - 20*y^2 + 81 with 
a in 2.375100220297941?
++            Number Field in a with defining polynomial y^4 - 20*y^2 + 81 with 
a in -3.789313782671036?
+             sage: (QQbar(7)^(3/5))._exact_field()
+             Number Field in a with defining polynomial y^5 - 2*y^4 - 18*y^3 + 
38*y^2 + 82*y - 181 with a in 2.554256611698490?
+         """
+@@ -4442,7 +4442,7 @@ class 
AlgebraicNumber_base(sage.structure.element.FieldElement):
+             sage: QQbar(2)._exact_value()
+             2
+             sage: (sqrt(QQbar(2)) + sqrt(QQbar(19)))._exact_value()
+-            -1/9*a^3 - a^2 + 11/9*a + 10 where a^4 - 20*a^2 + 81 = 0 and a in 
2.375100220297941?
++            -1/9*a^3 + a^2 + 11/9*a - 10 where a^4 - 20*a^2 + 81 = 0 and a in 
-3.789313782671036?
+             sage: (QQbar(7)^(3/5))._exact_value()
+             2*a^4 + 2*a^3 - 34*a^2 - 17*a + 150 where a^5 - 2*a^4 - 18*a^3 + 
38*a^2 + 82*a - 181 = 0 and a in 2.554256611698490?
+         """
+@@ -6857,7 +6857,7 @@ class AlgebraicPolynomialTracker(SageObject):
+             sage: p = sqrt(AA(2)) * x^2 - sqrt(AA(3))
+             sage: cp = AA.common_polynomial(p)
+             sage: cp.generator()
+-            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in 1.931851652578137?
++            Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a 
in -0.5176380902050415?
+         """
+         self.exactify()
+         return self._gen
+@@ -7706,7 +7706,7 @@ class ANExtensionElement(ANDescr):
+ 
+             sage: rt2b.exactify()
+             sage: rt2b._descr
+-            a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137?
++            a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
+             sage: rt2b._descr.is_simple()
+             False
+         """
+@@ -7791,7 +7791,7 @@ class ANExtensionElement(ANDescr):
+             sage: rt2b = rt3 + rt2 - rt3
+             sage: rt2b.exactify()
+             sage: rt2b._descr
+-            a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in 1.931851652578137?
++            a^3 - 3*a where a^4 - 4*a^2 + 1 = 0 and a in -0.5176380902050415?
+             sage: rt2b._descr.simplify(rt2b)
+             a where a^2 - 2 = 0 and a in 1.414213562373095?
+         """
+@@ -7830,9 +7830,9 @@ class ANExtensionElement(ANDescr):
+             sage: type(b)
+             <class 'sage.rings.qqbar.ANExtensionElement'>
+             sage: b.neg(a)
+-            1/3*a^3 - 2/3*a^2 + 4/3*a - 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 
0 and a in -0.7247448713915890? - 1.573132184970987?*I
++            -1/3*a^3 + 1/3*a^2 - a - 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 
and a in 1.724744871391589? + 1.573132184970987?*I
+             sage: b.neg("ham spam and eggs")
+-            1/3*a^3 - 2/3*a^2 + 4/3*a - 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 = 
0 and a in -0.7247448713915890? - 1.573132184970987?*I
++            -1/3*a^3 + 1/3*a^2 - a - 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 
and a in 1.724744871391589? + 1.573132184970987?*I
+         """
+         return ANExtensionElement(self._generator, -self._value)
+ 
+@@ -7848,9 +7848,9 @@ class ANExtensionElement(ANDescr):
+             sage: type(b)
+             <class 'sage.rings.qqbar.ANExtensionElement'>
+             sage: b.invert(a)
+-            7/3*a^3 - 2/3*a^2 + 4/3*a - 12 where a^4 - 2*a^3 + a^2 - 6*a + 9 
= 0 and a in -0.7247448713915890? - 1.573132184970987?*I
++            -7/3*a^3 + 19/3*a^2 - 7*a - 9 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 
0 and a in 1.724744871391589? + 1.573132184970987?*I
+             sage: b.invert("ham spam and eggs")
+-            7/3*a^3 - 2/3*a^2 + 4/3*a - 12 where a^4 - 2*a^3 + a^2 - 6*a + 9 
= 0 and a in -0.7247448713915890? - 1.573132184970987?*I
++            -7/3*a^3 + 19/3*a^2 - 7*a - 9 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 
0 and a in 1.724744871391589? + 1.573132184970987?*I
+         """
+         return ANExtensionElement(self._generator, ~self._value)
+ 
+@@ -7866,9 +7866,9 @@ class ANExtensionElement(ANDescr):
+             sage: type(b)
+             <class 'sage.rings.qqbar.ANExtensionElement'>
+             sage: b.conjugate(a)
+-            -1/3*a^3 + 2/3*a^2 - 4/3*a + 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 
= 0 and a in -0.7247448713915890? + 1.573132184970987?*I
++            1/3*a^3 - 1/3*a^2 + a + 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 
and a in 1.724744871391589? - 1.573132184970987?*I
+             sage: b.conjugate("ham spam and eggs")
+-            -1/3*a^3 + 2/3*a^2 - 4/3*a + 2 where a^4 - 2*a^3 + a^2 - 6*a + 9 
= 0 and a in -0.7247448713915890? + 1.573132184970987?*I
++            1/3*a^3 - 1/3*a^2 + a + 1 where a^4 - 2*a^3 + a^2 + 6*a + 3 = 0 
and a in 1.724744871391589? - 1.573132184970987?*I
+         """
+         if self._exactly_real:
+             return self
+@@ -8501,7 +8501,7 @@ def an_binop_expr(a, b, op):
+         sage: x = an_binop_expr(a, b, operator.add); x
+         <sage.rings.qqbar.ANBinaryExpr object at ...>
+         sage: x.exactify()
+-        -6/7*a^7 + 2/7*a^6 + 71/7*a^5 - 26/7*a^4 - 125/7*a^3 + 72/7*a^2 + 
43/7*a - 47/7 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in 3.12580...?
++        6/7*a^7 - 2/7*a^6 - 71/7*a^5 + 26/7*a^4 + 125/7*a^3 - 72/7*a^2 - 
43/7*a + 47/7 where a^8 - 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in 
-0.3199179336182997?
+ 
+         sage: a = QQbar(sqrt(2)) + QQbar(sqrt(3))
+         sage: b = QQbar(sqrt(3)) + QQbar(sqrt(5))
+@@ -8510,7 +8510,7 @@ def an_binop_expr(a, b, op):
+         sage: x = an_binop_expr(a, b, operator.mul); x
+         <sage.rings.qqbar.ANBinaryExpr object at ...>
+         sage: x.exactify()
+-        2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 - 22*a + 9 where a^8 
- 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in 3.1258...?
++        2*a^7 - a^6 - 24*a^5 + 12*a^4 + 46*a^3 - 22*a^2 - 22*a + 9 where a^8 
- 12*a^6 + 23*a^4 - 12*a^2 + 1 = 0 and a in -0.3199179336182997?
+     """
+     return ANBinaryExpr(a, b, op)
+ 
+diff --git a/src/sage/schemes/affine/affine_morphism.py 
b/src/sage/schemes/affine/affine_morphism.py
+index 1c4f2dff18..32c2e47e49 100644
+--- a/src/sage/schemes/affine/affine_morphism.py
++++ b/src/sage/schemes/affine/affine_morphism.py
+@@ -1148,9 +1148,9 @@ class 
SchemeMorphism_polynomial_affine_space_field(SchemeMorphism_polynomial_aff
+             sage: H = End(A)
+             sage: f = H([(QQbar(sqrt(2))*x^2 + 1/QQbar(sqrt(3))) / (5*x)])
+             sage: f.reduce_base_field()
+-            Scheme endomorphism of Affine Space of dimension 1 over Number 
Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = 1.931851652578137?
++            Scheme endomorphism of Affine Space of dimension 1 over Number 
Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = ...?
+               Defn: Defined on coordinates by sending (x) to
+-                    (((a^3 - 3*a)*x^2 + (1/3*a^2 - 2/3))/(5*x))
++                    (((a^3 - 3*a)*x^2 + (-1/3*a^2 + 2/3))/(5*x))
+ 
+         ::
+ 
+diff --git a/src/sage/schemes/elliptic_curves/ell_field.py 
b/src/sage/schemes/elliptic_curves/ell_field.py
+index 68b8375dae..48f358ea6a 100644
+--- a/src/sage/schemes/elliptic_curves/ell_field.py
++++ b/src/sage/schemes/elliptic_curves/ell_field.py
+@@ -845,7 +845,7 @@ class 
EllipticCurve_field(ell_generic.EllipticCurve_generic, ProjectivePlaneCurv
+             sage: E = E.base_extend(G).quadratic_twist(c); E
+             Elliptic Curve defined by y^2 = x^3 + 5*a0*x^2 + (-200*a0^2)*x + 
(-42000*a0^2+42000*a0+126000) over Number Field in a0 with defining polynomial 
x^3 - 3*x^2 + 3*x + 9
+             sage: K.<b> = E.division_field(3, simplify_all=True); K
+-            Number Field in b with defining polynomial x^12 - 10*x^10 + 
55*x^8 - 60*x^6 + 75*x^4 + 1350*x^2 + 2025
++            Number Field in b with defining polynomial x^12 + 5*x^10 + 40*x^8 
+ 315*x^6 + 750*x^4 + 675*x^2 + 2025
+ 
+         Some higher-degree examples::
+ 
+diff --git a/src/sage/schemes/elliptic_curves/ell_generic.py 
b/src/sage/schemes/elliptic_curves/ell_generic.py
+index 926ae310ea..3bae819fb0 100644
+--- a/src/sage/schemes/elliptic_curves/ell_generic.py
++++ b/src/sage/schemes/elliptic_curves/ell_generic.py
+@@ -3324,8 +3324,8 @@ class EllipticCurve_generic(WithEqualityById, 
plane_curve.ProjectivePlaneCurve):
+             sage: K.<a> = QuadraticField(2)
+             sage: E = EllipticCurve([1,a])
+             sage: E.pari_curve()
+-            [Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(1, y^2 - 
2),
+-            Mod(y, y^2 - 2), Mod(0, y^2 - 2), Mod(2, y^2 - 2), Mod(4*y, y^2 - 
2),
++            [0, 0, 0, Mod(1, y^2 - 2),
++            Mod(y, y^2 - 2), 0, Mod(2, y^2 - 2), Mod(4*y, y^2 - 2),
+             Mod(-1, y^2 - 2), Mod(-48, y^2 - 2), Mod(-864*y, y^2 - 2),
+             Mod(-928, y^2 - 2), Mod(3456/29, y^2 - 2), Vecsmall([5]),
+             [[y^2 - 2, [2, 0], 8, 1, [[1, -1.41421356237310;
+diff --git a/src/sage/schemes/elliptic_curves/ell_number_field.py 
b/src/sage/schemes/elliptic_curves/ell_number_field.py
+index edbd196090..c44c803aa8 100644
+--- a/src/sage/schemes/elliptic_curves/ell_number_field.py
++++ b/src/sage/schemes/elliptic_curves/ell_number_field.py
+@@ -218,7 +218,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
+             sage: E == loads(dumps(E))
+             True
+             sage: E.simon_two_descent()
+-            (2, 2, [(0 : 0 : 1)])
++            (2, 2, [(0 : 0 : 1), (1/18*a + 7/18 : -5/54*a - 17/54 : 1)])
+             sage: E.simon_two_descent(lim1=5, lim3=5, limtriv=10, maxprob=7, 
limbigprime=10)
+             (2, 2, [(-1 : 0 : 1), (-2 : -1/2*a - 1/2 : 1)])
+ 
+@@ -274,7 +274,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
+             sage: E.simon_two_descent()  # long time (4s on sage.math, 2013)
+             (3,
+              3,
+-             [(5/8*zeta43_0^2 + 17/8*zeta43_0 - 9/4 : -27/16*zeta43_0^2 - 
103/16*zeta43_0 + 39/8 : 1),
++             [(1/8*zeta43_0^2 - 3/8*zeta43_0 - 1/4 : -5/16*zeta43_0^2 + 
7/16*zeta43_0 + 1/8 : 1),
+               (0 : 0 : 1)])
+         """
+         verbose = int(verbose)
+@@ -865,7 +865,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
+             Conductor exponent: 1
+             Kodaira Symbol: I1
+             Tamagawa Number: 1,
+-            Local data at Fractional ideal (-3*i - 2):
++            Local data at Fractional ideal (-2*i + 3):
+             Reduction type: bad split multiplicative
+             Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + 
y = x^3 over Number Field in i with defining polynomial x^2 + 1
+             Minimal discriminant valuation: 2
+@@ -2645,12 +2645,12 @@ class EllipticCurve_number_field(EllipticCurve_field):
+             [-92, -23, -23]
+ 
+             sage: C.matrix()  # long time
+-            [1 2 2 4 2 4]
+-            [2 1 2 2 4 4]
+-            [2 2 1 4 4 2]
+-            [4 2 4 1 3 3]
+-            [2 4 4 3 1 3]
+-            [4 4 2 3 3 1]
++            [1 2 2 4 4 2]
++            [2 1 2 4 2 4]
++            [2 2 1 2 4 4]
++            [4 4 2 1 3 3]
++            [4 2 4 3 1 3]
++            [2 4 4 3 3 1]
+ 
+         The graph of this isogeny class has a shape which does not
+         occur over `\QQ`: a triangular prism.  Note that for curves
+@@ -2677,12 +2677,12 @@ class EllipticCurve_number_field(EllipticCurve_field):
+ 
+             sage: G = C.graph()  # long time
+             sage: G.adjacency_matrix()  # long time
+-            [0 1 1 0 1 0]
+-            [1 0 1 1 0 0]
+-            [1 1 0 0 0 1]
+-            [0 1 0 0 1 1]
+-            [1 0 0 1 0 1]
+-            [0 0 1 1 1 0]
++            [0 1 1 0 0 1]
++            [1 0 1 0 1 0]
++            [1 1 0 1 0 0]
++            [0 0 1 0 1 1]
++            [0 1 0 1 0 1]
++            [1 0 0 1 1 0]
+ 
+         To display the graph without any edge labels::
+ 
+@@ -3316,7 +3316,7 @@ class EllipticCurve_number_field(EllipticCurve_field):
+             sage: points = [E.lift_x(x) for x in xi]
+             sage: newpoints, U = E.lll_reduce(points)  # long time (35s on 
sage.math, 2011)
+             sage: [P[0] for P in newpoints]            # long time
+-            [6823803569166584943, 5949539878899294213, 2005024558054813068, 
5864879778877955778, 23955263915878682727/4, 5922188321411938518, 
5286988283823825378, 175620639884534615751/25, -11451575907286171572, 
3502708072571012181, 1500143935183238709184/225, 27180522378120223419/4, 
-5811874164190604461581/625, 26807786527159569093, 7404442636649562303, 
475656155255883588, 265757454726766017891/49, 7272142121019825303, 
50628679173833693415/4, 6951643522366348968, 6842515151518070703, 
111593750389650846885/16, 2607467890531740394315/9, -1829928525835506297]
++            [6823803569166584943, 5949539878899294213, 2005024558054813068, 
5864879778877955778, 23955263915878682727/4, 5922188321411938518, 
5286988283823825378, 11465667352242779838, -11451575907286171572, 
3502708072571012181, 1500143935183238709184/225, 27180522378120223419/4, 
-5811874164190604461581/625, 26807786527159569093, 7041412654828066743, 
475656155255883588, 265757454726766017891/49, 7272142121019825303, 
50628679173833693415/4, 6951643522366348968, 6842515151518070703, 
111593750389650846885/16, 2607467890531740394315/9, -1829928525835506297]
+ 
+         An example to show the explicit use of the height pairing matrix::
+ 
+diff --git a/src/sage/schemes/elliptic_curves/ell_rational_field.py 
b/src/sage/schemes/elliptic_curves/ell_rational_field.py
+index 3808822812..a75290ea35 100644
+--- a/src/sage/schemes/elliptic_curves/ell_rational_field.py
++++ b/src/sage/schemes/elliptic_curves/ell_rational_field.py
+@@ -1827,7 +1827,7 @@ class 
EllipticCurve_rational_field(EllipticCurve_number_field):
+             sage: E = EllipticCurve('389a1')
+             sage: E._known_points = []  # clear cached points
+             sage: E.simon_two_descent()
+-            (2, 2, [(1 : 0 : 1), (-11/9 : 28/27 : 1)])
++            (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
+             sage: E = EllipticCurve('5077a1')
+             sage: E.simon_two_descent()
+             (3, 3, [(1 : 0 : 1), (2 : 0 : 1), (0 : 2 : 1)])
+diff --git a/src/sage/schemes/elliptic_curves/gal_reps_number_field.py 
b/src/sage/schemes/elliptic_curves/gal_reps_number_field.py
+index 81ad295160..d484a4a18b 100644
+--- a/src/sage/schemes/elliptic_curves/gal_reps_number_field.py
++++ b/src/sage/schemes/elliptic_curves/gal_reps_number_field.py
+@@ -780,12 +780,12 @@ def deg_one_primes_iter(K, principal_only=False):
+         [Fractional ideal (2, a + 1),
+          Fractional ideal (3, a + 1),
+          Fractional ideal (3, a + 2),
+-         Fractional ideal (-a),
++         Fractional ideal (a),
+          Fractional ideal (7, a + 3),
+          Fractional ideal (7, a + 4)]
+         sage: it = deg_one_primes_iter(K, True)
+         sage: [next(it) for _ in range(6)]
+-        [Fractional ideal (-a),
++        [Fractional ideal (a),
+          Fractional ideal (-2*a + 3),
+          Fractional ideal (2*a + 3),
+          Fractional ideal (a + 6),
+diff --git a/src/sage/schemes/elliptic_curves/gp_simon.py 
b/src/sage/schemes/elliptic_curves/gp_simon.py
+index 28b97f34af..9f7d1b6020 100644
+--- a/src/sage/schemes/elliptic_curves/gp_simon.py
++++ b/src/sage/schemes/elliptic_curves/gp_simon.py
+@@ -56,7 +56,7 @@ def simon_two_descent(E, verbose=0, lim1=None, lim3=None, 
limtriv=None,
+         sage: import sage.schemes.elliptic_curves.gp_simon
+         sage: E=EllipticCurve('389a1')
+         sage: sage.schemes.elliptic_curves.gp_simon.simon_two_descent(E)
+-        (2, 2, [(1 : 0 : 1), (-11/9 : 28/27 : 1)])
++        (2, 2, [(5/4 : 5/8 : 1), (-3/4 : 7/8 : 1)])
+ 
+     TESTS::
+ 
+@@ -117,7 +117,7 @@ def simon_two_descent(E, verbose=0, lim1=None, lim3=None, 
limtriv=None,
+     # The block below mimics the defaults in Simon's scripts, and needs to be 
changed
+     # when these are updated.
+     if K is QQ:
+-        cmd = 'ellrank(%s, %s);' % (list(E.ainvs()), [P.__pari__() for P in 
known_points])
++        cmd = 'ellQ_ellrank(%s, %s);' % (list(E.ainvs()), [P.__pari__() for P 
in known_points])
+         if lim1 is None:
+             lim1 = 5
+         if lim3 is None:
+@@ -144,7 +144,7 @@ def simon_two_descent(E, verbose=0, lim1=None, lim3=None, 
limtriv=None,
+     if verbose > 0:
+         print(s)
+     v = gp.eval('ans')
+-    if v=='ans': # then the call to ellrank() or bnfellrank() failed
++    if v=='ans': # then the call to ellQ_ellrank() or bnfellrank() failed
+         raise RuntimeError("An error occurred while running Simon's 2-descent 
program")
+     if verbose >= 2:
+         print("v = %s" % v)
+diff --git a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py 
b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
+index a936deb74f..dc19254d8c 100644
+--- a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
++++ b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
+@@ -1208,14 +1208,14 @@ def isogenies_13_0(E, minimal_models=True):
+         sage: [phi.codomain().ainvs() for phi in isogenies_13_0(E)]  # long 
time (4s)
+         [(0,
+           0,
+-          20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 - 
101/8789110986240*a^9 + 5557619461/573489491852160*a^8 - 
82824971/11947697746920*a^7 - 19487/21127670640*a^6 - 
475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 + 
8349/521670880*a^3 + 5858744881/12764634345*a^2 - 1858703809/2836585410*a + 
58759402/48906645,
++          20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 + 
1887439/1146978983704320*a^9 + 5557619461/573489491852160*a^8 - 
82824971/11947697746920*a^7 + 1030632647/7965131831280*a^6 - 
475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 - 
43618899433/204234149520*a^3 + 5858744881/12764634345*a^2 - 
1858703809/2836585410*a + 2535050171/1418292705,
+           -139861295/2650795873449984*a^11 - 3455957/5664093746688*a^10 - 
345310571/50976843720192*a^9 - 500530795/118001953056*a^8 - 
12860048113/265504394376*a^7 - 25007420461/44250732396*a^6 + 
458134176455/1416023436672*a^5 + 16701880631/9077073312*a^4 + 
155941666417/9077073312*a^3 + 3499310115/378211388*a^2 - 736774863/94552847*a - 
21954102381/94552847,
+-          579363345221/13763747804451840*a^11 + 
371192377511/860234237778240*a^10 + 8855090365657/1146978983704320*a^9 + 
5367261541663/1633873196160*a^8 + 614883554332193/15930263662560*a^7 + 
30485197378483/68078049840*a^6 - 131000897588387/2450809794240*a^5 - 
203628705777949/306351224280*a^4 - 1587619388190379/204234149520*a^3 + 
14435069706551/11346341640*a^2 + 7537273048614/472764235*a + 
89198980034806/472764235),
++          8342795944891/198197968384106496*a^11 + 
8908625263589/20645621706677760*a^10 + 53130542636623/6881873902225920*a^9 + 
376780111042213/114697898370432*a^8 + 614884052146333/15930263662560*a^7 + 
3566768133324359/7965131831280*a^6 - 1885593809102545/35291661037056*a^5 - 
2443732172026523/3676214691360*a^4 - 9525729503937541/1225404897120*a^3 + 
51990274442321/40846829904*a^2 + 67834019370596/4254878115*a + 
267603083706812/1418292705),
+          (0,
+           0,
+-          20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 - 
101/8789110986240*a^9 + 5557619461/573489491852160*a^8 - 
82824971/11947697746920*a^7 - 19487/21127670640*a^6 - 
475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 + 
8349/521670880*a^3 + 5858744881/12764634345*a^2 - 1858703809/2836585410*a + 
58759402/48906645,
++          20360599/165164973653422080*a^11 - 3643073/41291243413355520*a^10 + 
1887439/1146978983704320*a^9 + 5557619461/573489491852160*a^8 - 
82824971/11947697746920*a^7 + 1030632647/7965131831280*a^6 - 
475752603733/29409717530880*a^5 + 87205112531/7352429382720*a^4 - 
43618899433/204234149520*a^3 + 5858744881/12764634345*a^2 - 
1858703809/2836585410*a + 2535050171/1418292705,
+           -6465569317/1325397936724992*a^11 - 112132307/1960647835392*a^10 - 
17075412917/25488421860096*a^9 - 207832519229/531008788752*a^8 - 
1218275067617/265504394376*a^7 - 9513766502551/177002929584*a^6 + 
4297077855437/708011718336*a^5 + 354485975837/4538536656*a^4 + 
4199379308059/4538536656*a^3 - 30841577919/189105694*a^2 - 
181916484042/94552847*a - 2135779171614/94552847,
+-          -132601797212627/3440936951112960*a^11 - 
6212467020502021/13763747804451840*a^10 - 1515926454902497/286744745926080*a^9 
- 15154913741799637/4901619588480*a^8 - 576888119803859263/15930263662560*a^7 - 
86626751639648671/204234149520*a^6 + 16436657569218427/306351224280*a^5 + 
1540027900265659087/2450809794240*a^4 + 375782662805915809/51058537380*a^3 - 
14831920924677883/11346341640*a^2 - 7237947774817724/472764235*a - 
84773764066089509/472764235)]
++          -1316873026840277/34172063514501120*a^11 - 
18637401045099413/41291243413355520*a^10 - 
36382234917217247/6881873902225920*a^9 - 61142238484016213/19775499719040*a^8 - 
576888119306045123/15930263662560*a^7 - 3378443313906256321/7965131831280*a^6 + 
326466167429333279/6084769144320*a^5 + 4620083325391594991/7352429382720*a^4 + 
9018783894167184149/1225404897120*a^3 - 9206015742300283/7042556880*a^2 - 
65141531411426446/4254878115*a - 254321286054666133/1418292705)]
+     """
+     if E.j_invariant()!=0:
+         raise ValueError("j-invariant must be 0.")

Reply via email to