Hmm... first run this in a fresh R session:

library("aroma.affymetrix");
cdf <- AffymetrixCdfFile$byChipType("GenomeWideSNP_6", tags="Full");
csR <- AffymetrixCelSet$byName("test", cdf=cdf);
acc <- AllelicCrosstalkCalibration(csR, model="CRMAv2");
csC <- process(acc, verbose=verbose);
bpn <- BasePositionNormalization(csC, target="zero");
csN <- process(bpn, verbose=verbose);

then what's the output of:
print(csN);
print(getFullNames(csN));
cdf2 <- getCdf(csN);
stopifnot(identical(getChecksum(cdf2), getChecksum(cdf))); # IMPORTANT

If you get an error above, what is the output of print(cdf2) and
getChecksum(cdf2)?  If not, continue:

plm <- AvgCnPlm(csN, mergeStrands=TRUE, combineAlleles=TRUE);
units <- findUnitsTodo(plm);
str(units);
##  int [1:934968] 622 623 624 625 626 627 628 629 630 631 ...

Do you get the same?  If so, continue:

units2 <- fit(plm, verbose=-10);

You should get something like the following, except from the
dataset/sample names (if not, let me know):

## Fitting model of class AvgCnPlm...
##  AvgCnPlm:
##  Data set: GSE13372
##  Chip type: GenomeWideSNP_6,Full
##  Input tags: testset,ACC,ra,-XY,BPN,-XY
##  Output tags: testset,ACC,ra,-XY,BPN,-XY,AVG,A+B
##  Parameters: {probeModel: chr "pm", shift: num 0, flavor: chr
"median", mergeStrands: logi TRUE, combineAlleles: logi TRUE}
##  Path: plmData/GSE13372,testset,ACC,ra,-XY,BPN,-XY,AVG,A+B/GenomeWideSNP_6
##  RAM: 0.01MB
##  Identifying non-estimated units...
##   Identifying non-fitted units in chip-effect file...
##    Pathname:
plmData/GSE13372,testset,ACC,ra,-XY,BPN,-XY,AVG,A+B/GenomeWideSNP_6/GSM337708,chipEffects.CEL
##    Found indices cached on file
##    Reading data for these 1881415 cells...
##    Reading data for these 1881415 cells...done
##    Looking for stdvs <= 0 indicating non-estimated units:
##     int [1:934968] 622 623 624 625 626 627 628 629 630 631 ...
##   Identifying non-fitted units in chip-effect file...done
##  Identifying non-estimated units...done
##  Getting model fit for 934968 units.
##  Identifying unit types:...
##   Units:
##    int [1:934968] 622 623 624 625 626 627 628 629 630 631 ...
##   Unit types:
##    atomic [1:934968] 2 2 2 2 2 2 2 2 2 2 ...
##    - attr(*, "types")= Named int [1:8] 0 1 2 3 4 5 6 7
##     ..- attr(*, "names")= chr [1:8] "unknown" "expression"
"genotyping" "resequencing" ...
##   unitTypes
##        2
##   934968
##   Unique unit types:
##   genotyping
##            2
##  Identifying unit types:...done
##  Setting up parameter sets...
##   Creating CEL file...
##    Chip type: GenomeWideSNP_6,Full
##    Pathname:
plmData/GSE13372,testset,ACC,ra,-XY,BPN,-XY,AVG,A+B/GenomeWideSNP_6/probeAffinities.CEL
##    Returning already existing file.
##   Creating CEL file...done
##             used (Mb) gc trigger  (Mb) max used  (Mb)
##   Ncells  549305 29.4    1606180  85.8 13015638 695.2
##   Vcells 7692698 58.7   23004541 175.6 40154683 306.4
##  Setting up parameter sets...done
##  Fitting AvgCnPlm for each unit type separately...
##   Unit types:
##   genotyping
##            2
##   Unit type #1 ('genotyping') of 1...
##    Unit type: genotyping (code=2)
##    Number of units of this type: 934968
##     int [1:934968] 622 623 624 625 626 627 628 629 630 631 ...
##    Fitting the model by unit dimensions (at least for the large classes)...
##     Grouping units into equivalent (unit,group,cell) dimensions...
[...]

What is particular interesting are the outputs of your unit types and
unit indices.

/Henrik

On Mon, Nov 26, 2012 at 10:45 AM, Ioana Cutcutache
<ioana.cutcuta...@gmail.com> wrote:
>> library("aroma.affymetrix")
>> log <- verbose <- Arguments$getVerbose(-8, timestamp=TRUE)
>> options(digits=4)
>> cdf <- AffymetrixCdfFile$byChipType("GenomeWideSNP_6", tags="Full")
>> print(cdf)
>> gi <- getGenomeInformation(cdf)
>> print(gi)
>> si <- getSnpInformation(cdf)
>> print(si)
>> acs <- AromaCellSequenceFile$byChipType(getChipType(cdf, fullname=FALSE))
>> print(acs)
>> cdf <- AffymetrixCdfFile$byChipType("GenomeWideSNP_6", tags="Full")
>> csR <- AffymetrixCelSet$byName("test", cdf=cdf)
>> print(csR)
>> acc <- AllelicCrosstalkCalibration(csR, model="CRMAv2")
>> print(acc)
>> csC <- process(acc, verbose=verbose)
>> print(csC)
>> bpn <- BasePositionNormalization(csC, target="zero")
>> print(bpn)
>> csN <- process(bpn, verbose=verbose)
>> print(csN)

-- 
When reporting problems on aroma.affymetrix, make sure 1) to run the latest 
version of the package, 2) to report the output of sessionInfo() and 
traceback(), and 3) to post a complete code example.


You received this message because you are subscribed to the Google Groups 
"aroma.affymetrix" group with website http://www.aroma-project.org/.
To post to this group, send email to aroma-affymetrix@googlegroups.com
To unsubscribe and other options, go to http://www.aroma-project.org/forum/

Reply via email to