With the attached patch (relative to GIT repository), I'm able to program
an ATtiny9 via TPI using a USBtiny programmer (such as SparkFun AVR Pocket
Programmer).
Example command:
$ ./
avrdude -Cavrdude.conf -pt9 -cusbtiny -Uflash:w:/tmp/out.hex
--david
--
eGauge Systems LLC, http://egauge.net/, 1.877-EGAUGE1, fax 720.545.9768
diff --git a/avrdude/usbtiny.c b/avrdude/usbtiny.c
index ff2597f..0329f2f 100644
--- a/avrdude/usbtiny.c
+++ b/avrdude/usbtiny.c
@@ -37,6 +37,7 @@
#include "pgm.h"
#include "config.h"
#include "usbtiny.h"
+#include "tpi.h"
#if defined(HAVE_LIBUSB) // we use LIBUSB to talk to the board
#if defined(HAVE_USB_H)
@@ -68,6 +69,9 @@ struct pdata
int retries;
};
+static int usbtiny_tpi_txtx(PROGRAMMER *, unsigned char, unsigned char);
+static int usbtiny_tpi_txrx(PROGRAMMER *, unsigned char);
+
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
// ----------------------------------------------------------------------
@@ -330,10 +334,28 @@ static int usbtiny_set_sck_period (PROGRAMMER *pgm,
double v)
return 0;
}
+static unsigned char reverse(unsigned char b) {
+ return
+ ( (b & 0x01) << 7)
+ | ((b & 0x02) << 5)
+ | ((b & 0x04) << 3)
+ | ((b & 0x08) << 1)
+ | ((b & 0x10) >> 1)
+ | ((b & 0x20) >> 3)
+ | ((b & 0x40) >> 5)
+ | ((b & 0x80) >> 7);
+}
+
+/* Convert word from host byte order to big-endian byte-order,
+ little-endian bit order: */
+static unsigned short h2be(unsigned short w) {
+ return (w << 8) | (w >> 8);
+}
static int usbtiny_initialize (PROGRAMMER *pgm, AVRPART *p )
{
unsigned char res[4]; // store the response from usbtinyisp
+ int tries;
// Check for bit-clock and tell the usbtiny to adjust itself
if (pgm->bitclock > 0.0) {
@@ -355,8 +377,36 @@ static int usbtiny_initialize (PROGRAMMER *pgm, AVRPART *p
)
// Let the device wake up.
usleep(50000);
- // Attempt to use the underlying avrdude methods to connect (MEME: is this
kosher?)
- if (! usbtiny_avr_op(pgm, p, AVR_OP_PGM_ENABLE, res)) {
+ if (p->flags & AVRPART_HAS_TPI) {
+ if (verbose >= 2)
+ fprintf(stderr, "doing MOSI-MISO link check\n");
+
+ memset(res, 0xaa, sizeof(res));
+ if (usb_in(pgm, USBTINY_SPI, h2be(0x1234), h2be(0x5678),
+ res, 4, 32 * PDATA(pgm)->sck_period)
+ < 0)
+ {
+ fprintf(stderr, "usb_in() failed\n");
+ return -1;
+ }
+ if (res[0] != 0x12 || res[1] != 0x34 || res[2] != 0x56 || res[3] != 0x78) {
+ fprintf(stderr, "MOSI->MISO check failed (got 0x%02x 0x%02x 0x%02x
0x%02x)\n",
+ res[0], res[1], res[2], res[3]);
+ return -1;
+ }
+
+ /* keep TPIDATA high for >= 16 clock cycles: */
+ if (usb_in(pgm, USBTINY_SPI, 0xffff, 0xffff, res, 4, 32 *
PDATA(pgm)->sck_period)
+ < 0)
+ {
+ fprintf(stderr, "Unable to switch chip into TPI mode\n");
+ return -1;
+ }
+ }
+
+ for (tries = 0; tries < 4; ++tries) {
+ if (pgm->program_enable(pgm, p) >= 0)
+ break;
// no response, RESET and try again
if (usb_control(pgm, USBTINY_POWERUP,
PDATA(pgm)->sck_period, RESET_HIGH) < 0 ||
@@ -364,11 +414,9 @@ static int usbtiny_initialize (PROGRAMMER *pgm, AVRPART *p
)
PDATA(pgm)->sck_period, RESET_LOW) < 0)
return -1;
usleep(50000);
- if ( ! usbtiny_avr_op( pgm, p, AVR_OP_PGM_ENABLE, res)) {
- // give up
- return -1;
- }
}
+ if (tries >= 4)
+ return -1;
return 0;
}
@@ -407,11 +455,133 @@ static int usbtiny_cmd(PROGRAMMER * pgm, const unsigned
char *cmd, unsigned char
res[2] == cmd[1]); // AVR's do a delayed-echo thing
}
+static unsigned char parity(unsigned char b)
+{
+ /* calculate parity: */
+ unsigned char parity = 0;
+ int i;
+
+ for (i = 0; i < 8; ++i) {
+ if (b & 1)
+ parity ^= 1;
+ b >>= 1;
+ }
+ return parity;
+}
+
+static int usbtiny_tpi_tx(PROGRAMMER *pgm, unsigned char b0)
+{
+ unsigned char res[4];
+ int nbytes;
+
+ /* Encode 1 start bit (0), 8 data bits, 1 parity, 2 stop bits (1)
+ inside 32 bits. For easy debugging, start bit is the last bit of
+ the first byte, followed by the rest. */
+
+ nbytes = usb_in(pgm, USBTINY_SPI,
+ h2be(0xf000 | (reverse(b0) << 3) | parity(b0) << 2 | 0x3),
+ 0xffff,
+ res, sizeof(res), 8 * sizeof(res) * PDATA(pgm)->sck_period);
+ if (nbytes < 0)
+ return -1;
+ if (verbose > 1)
+ fprintf(stderr, "CMD_TPI_TX: [0x%02x]\n", b0);
+ return 1;
+}
+
+static int usbtiny_tpi_txtx(PROGRAMMER *pgm, unsigned char b0, unsigned char
b1)
+{
+ unsigned char res[4];
+ int nbytes;
+
+ /* Encode 1 start bit (0), 8 data bits, 1 parity, 2 stop bits (1)
+ inside 32 bits. For easy debugging, start bit is the last bit of
+ the first byte, followed by the rest. */
+
+ nbytes = usb_in(pgm, USBTINY_SPI,
+ h2be(0xf000 | (reverse(b0) << 3) | parity(b0) << 2 | 0x3),
+ h2be(0xf000 | (reverse(b1) << 3) | parity(b1) << 2 | 0x3),
+ res, sizeof(res), 8 * sizeof(res) * PDATA(pgm)->sck_period);
+ if (nbytes < 0)
+ return -1;
+ if (verbose > 1)
+ fprintf(stderr, "CMD_TPI_TX_TX: [0x%02x 0x%02x]\n", b0, b1);
+ return 1;
+}
+
+static int usbtiny_tpi_txrx(PROGRAMMER *pgm, unsigned char b0)
+{
+ unsigned char res[4], r;
+ int nbytes;
+ short w;
+
+ /* Encode 1 start bit (0), 8 data bits, 1 parity, 2 stop bits (1)
+ inside 32 bits. For easy debugging, start bit is the last bit of
+ the first byte, followed by the rest. */
+
+ nbytes = usb_in(pgm, USBTINY_SPI,
+ h2be(0xf000 | (reverse(b0) << 3) | parity(b0) << 2 | 0x3),
+ 0xffff,
+ res, sizeof(res), 8 * sizeof(res) * PDATA(pgm)->sck_period);
+ if (nbytes < 0)
+ return -1;
+
+ w = (res[2] << 8) | res[3];
+ /* Look for start bit (there shoule be no more than two 1 bits): */
+ while (w < 0)
+ w <<= 1;
+ /* Now that we found the start bit, the top 9 bits contain the start
+ bit and the 8 data bits, but the latter in reverse order. */
+ r = reverse(w >> 7);
+
+ if (verbose > 1)
+ fprintf(stderr, "CMD_TPI_TX_RX: [0x%02x -> 0x%02x]\n", b0, r);
+ return r;
+}
+
+int usbtiny_cmd_tpi(PROGRAMMER * pgm, const unsigned char *cmd,
+ int cmd_len, unsigned char *res, int res_len)
+{
+ unsigned char b0, b1;
+ int r = -1, tx, rx;
+
+ for (tx = rx = 0; tx < cmd_len; ) {
+ b0 = cmd[tx++];
+ if (tx < cmd_len) {
+ b1 = cmd[tx++];
+ if ((r = usbtiny_tpi_txtx(pgm, b0, b1)) < 0)
+ return -1;
+ } else {
+ if (res_len > 0) {
+ if ((r = usbtiny_tpi_txrx(pgm, b0)) < 0)
+ return -1;
+ res[rx++] = r;
+ } else {
+ if ((r = usbtiny_tpi_tx(pgm, b0)) < 0)
+ return -1;
+ }
+ }
+ }
+
+ if (rx < res_len) {
+ fprintf(stderr, "%s: unexpected cmd_len=%d/res_len=%d\n",
+ __func__, cmd_len, res_len);
+ return -1;
+ }
+
+ if (r == -1)
+ return -1;
+ return 0;
+}
+
/* Send the chip-erase command */
static int usbtiny_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
unsigned char res[4];
+ if (p->flags & AVRPART_HAS_TPI)
+ return avr_tpi_chip_erase(pgm, p);
+
if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
fprintf(stderr, "Chip erase instruction not defined for part \"%s\"\n",
p->desc);
@@ -542,6 +712,16 @@ static int usbtiny_paged_write(PROGRAMMER * pgm, AVRPART *
p, AVRMEM * m,
return n_bytes;
}
+static int usbtiny_program_enable(PROGRAMMER *pgm, AVRPART *p)
+{
+ unsigned char buf[4];
+
+ if (p->flags & AVRPART_HAS_TPI)
+ return avr_tpi_program_enable(pgm, p, 0x07);
+ else
+ return usbtiny_avr_op(pgm, p, AVR_OP_PGM_ENABLE, buf);
+}
+
void usbtiny_initpgm ( PROGRAMMER* pgm )
{
strcpy(pgm->type, "USBtiny");
@@ -550,9 +730,10 @@ void usbtiny_initpgm ( PROGRAMMER* pgm )
pgm->initialize = usbtiny_initialize;
pgm->enable = usbtiny_enable;
pgm->disable = usbtiny_disable;
- pgm->program_enable = NULL;
+ pgm->program_enable = usbtiny_program_enable;
pgm->chip_erase = usbtiny_chip_erase;
pgm->cmd = usbtiny_cmd;
+ pgm->cmd_tpi = usbtiny_cmd_tpi;
pgm->open = usbtiny_open;
pgm->close = usbtiny_close;
pgm->read_byte = avr_read_byte_default;
_______________________________________________
avrdude-dev mailing list
[email protected]
https://lists.nongnu.org/mailman/listinfo/avrdude-dev