I have already written that due to incomplte simplification we
may get zero divisors in Expression Integer.  Below an easy
example that multiplication in Expression Integer is nonassociative
(or, if you prefer, a proof that 1 equals 0):

(135) -> c1 := sqrt(2)*sqrt(3*x)+sqrt(6*x)

           +--+    +-+ +--+
   (135)  \|6x  + \|2 \|3x
                                                     Type: Expression Integer
(136) -> c2 := sqrt(2)*sqrt(3*x)-sqrt(6*x)

             +--+    +-+ +--+
   (136)  - \|6x  + \|2 \|3x
                                                     Type: Expression Integer
(137) -> (1/c1)*c1*c2*(1/c2)

   (137)  1
                                                     Type: Expression Integer
(138) -> (1/c1)*(c1*c2)*(1/c2)

   (138)  0
                                                     Type: Expression Integer

BTW, a similar looking constant expression throws an error:

(139) -> 1/(sqrt(2)*sqrt(3)+sqrt(6))

   >> Error detected within library code:
   univariate: denominator is 0 mod p

-- 
                              Waldek Hebisch
[EMAIL PROTECTED] 


_______________________________________________
Axiom-developer mailing list
[email protected]
http://lists.nongnu.org/mailman/listinfo/axiom-developer

Reply via email to