[EMAIL PROTECTED] wrote:
Item   14:150 Schaums and Axiom DISAGREE BY A NON-CONSTANT
in schaum7.input.pamphlet is particularly interesting because
it appears that the derivative of Axiom's answer is the original
integrand but the derivative of Schaum's answer is not, implying
that Schaum's has a mistake. This will be verified using other systems later.

Axiom is weak in handling certain simplifications. Future work is
planned to correct this.

Richard Fateman has given me permission to use his TILU pattern
integration database in Axiom. This should give us much broader
integration results. TILU has not been tested against Schaums
but this testing will occur during the merge.

schaum2.input.pamphet

  14:150 Schaums and Axiom DISAGREE BY A NON-CONSTANT
\section{\cite{1}:14.150~~~~~$\displaystyle\int{\frac{dx}{x^3(x^2-a^2)}}$}
@@ -124,7 +343,7 @@ $$
 <<*>>=
 )clear all
---S 7 of 19
+--S 29
 aa:=integrate(1/(x^3*(x^2-a^2)),x)
--R --R
@@ -135,6 +354,73 @@ aa:=integrate(1/(x^3*(x^2-a^2)),x)
 --R                     2a x
 --R                                          Type: Union(Expression 
Integer,...)
--E +
+--S 30
+bb:=1/(2*a^2*x*2)-1/(2*a^4)*log(x^2/(x^2-a^2))
+--R
+--R                     2
+--R                    x        2
+--R        - 2x log(-------) + a
+--R                  2    2
+--R                 x  - a
+--R   (2)  ----------------------
+--R                   4
+--R                 4a x
+--R                                                     Type: Expression 
Integer
+--E
+
+--S 31
+cc:=aa-bb
+--R
+--R                                                 2
+--R          2     2    2      2           2       x        2      2
+--R        2x log(x  - a ) - 4x log(x) + 2x log(-------) - a x + 2a
+--R                                              2    2
+--R                                             x  - a
+--R   (3)  ---------------------------------------------------------
+--R                                    4 2
+--R                                  4a x
+--R                                                     Type: Expression 
Integer
+--E
+
+--S 32
+divlog:=rule(log(a/b) == log(a) - log(b))
+--R
+--R            a
+--R   (4)  log(-) == - log(b) + log(a)
+--R            b
+--R                        Type: RewriteRule(Integer,Integer,Expression 
Integer)
+--E
+
+--S 33
+dd:=divlog cc
+--R
+--R          2     2      2          2      2
+--R        2x log(x ) - 4x log(x) - a x + 2a
+--R   (5)  ----------------------------------
+--R                         4 2
+--R                       4a x
+--R                                                     Type: Expression 
Integer
+--E
+
+--S 34
+logpow:=rule(log(a^n) == n*log(a))
+--R
+--R             n
+--R   (6)  log(a ) == n log(a)
+--R                        Type: RewriteRule(Integer,Integer,Expression 
Integer)
+--E
+
+--S 35     14:150 Schaums and Axiom DISAGREE BY A NON-CONSTANT
+ee:=logpow dd
+--R
+--R        - x + 2
+--R   (7)  -------
+--R           2 2
+--R         4a x
+--R                                                     Type: Expression 
Integer
+--E
+
 @


I tried it on maximum and got:

(%i6) integrate(1/(x^3*(x^2-a^2)),x);
                            2      2
                     log(x  - a )            log(x)                    1
(%o6) ------------ - ------ + ------- 4 4 2 2 2 a a 2 a x

and this agrees with my schaums book;



_______________________________________________
Axiom-developer mailing list
[email protected]
http://lists.nongnu.org/mailman/listinfo/axiom-developer

Reply via email to