JMS URL Syntax for the Apache Axis Project
June, 2003

Authors:
Dave Chappell (chappell @soni csoftware.com), Sonic Software
Ray Chun (rchun@sonicsoftware.com), Sonic Software
Jaime Meritt (jmeritt@soni csoftware.com), Sonic Software

Version History
This document is an update to the IMS URL Syntax proposal originally submitted to the
Axis community in November of 2002.

Acknowledgements

This specification includes feedback from the following individuals:
Phil Adams, IBM
James Snell, IBM
Glen Daniels, Macromedia

Summary

Thisisaproposa to define a URL syntax for use by the IM S transport layer in Axis. The
JMS URL syntax will allow avendor-neutral way of specifying JM S-specific details,
such as message priority and destination, without having to code such details explicitly
into the client application, or pass them from a command line.

The benefit to this approach is that with IM S transport details fully contained in aURL, it
is possible to switch between transports simply by modifying the transport URL. This
simplifiesthe task of creating JMS client applications and stub classes, and is a necessary
first step in adding JM S transport support to Axis wsdl2javatool.

1. Background

When one uses the IM S transport layer, details of the transport are hidden underneath the
client API of Axis. Axisimplementsthe JAX-RPC API. JAX-RPC provides multiple
models for constructing both static and dynamic invocations of aservice. There aretwo
flavors of dynamic invocation using the Call and Stub interface, and a static model using
WSDL 2Java stub generation. Both the Call and Stub interfaces allow the use of
application-specific properties that get passed down to the handlers, including the
transport handler.

Currently the model in Axis 1.0 is to specify the IM S-specific properties from the
command line, or in apropertiesfile. The client application then obtains these and places
the IM S-specific properties into the Call object by calling the setProperty() method. The

mailto:chappell@sonicsoftware.com
mailto:rchun@sonicsoftware.com
mailto:jmeritt@sonicsoftware.com

properties are then passed on to the transport handler, where they are extracted and used
to perform the appropriate actionsin IMS nomenclature. Examples of JM S-specific
properties include the location of a ConnectionFactory object, the name of aJMS
destination, the type of destination (topic or queue), username and password, and
message delivery options such as persistence.

1.1 Programming Model for the IMS Transport in Axis 1.0
The following sample code demonstrates the invocation of a stock quote web service
using the IM STransport classin Axis 1.0.

While the current model works well, the ease of plugging in the JIM S transport can be
made much more tenable by being able to specify everythingin aURL encoding. The
goal isto eliminate the need for IM S-specific code in the client application by
encapsulating transport logic within the transport implementation.

Example: Sample code using Axis 1.0 JIM STransport
Service service = new Service(new XML StringProvider(wsdd));

/I create the IM S transport
JM STransport transport = new JM STransport(connectorMap, cfMap);

/I create anew Call object
Cal cdl =(Cdl) servicecreateCal();

/I populate the call object. Inthiscaseit’s a method
/I invocation with a description of the parameter list and
/I the return type.
call.setOperationName(new QName("urn:xmltoday-delayed-quotes”,
“getQuote”));
call.addParameter("symbol",
XMLType.XSD_STRING,
ParameterMode.IN);
call.setReturnType(XMLType. XSD_FLOAT);

/I set the transport object
call.setTransport(transport);

/Il set some properties. These will get passed down into the handlers,
/l including the transport handler.
call.setUsername(username);
call.setPassword(password);
call.setProperty(JM SConstants WAIT_FOR_RESPONSE, Boolean.FALSE);
call.setProperty(JM SConstants.PRIORITY, new Integer(5));
call.setProperty(JM SConstants.DELIVERY _MODE,

new Integer(javax.jms.DeliveryMode.PERSISTENT));
call.setProperty(JM SConstants. TIME_TO_LIVE, new Long(20000));

call.setProperty(JM SConstants. DESTINATION, destination);

/I invoke the call
res = (Float) call.invoke(...);

/I shutdown the transport
transport.shutdown();

2. URL Syntax

Rather than inventing arigid syntax, it is desirable to use a URL-encoded query string in
accordance with RFC-1738. The intent isto specify aminimal syntax, allowing for the
most flexibility for different IM S providers.

Proposed syntax:

jms:/<destination>?7[<property>=<vaue>&|*

The JM S transport implementation will also support the use of ‘;’ asthe query delimiter,
in additionto ‘& .

Note that when specifying the IMS URL in awsdl file, the ampersand should be encoded
as“&” (or one of the alternate delimiters used):

<service name="OnewayService">
<port name="Oneway" binding="tns.OnewayBinding">
<soap:address
location="jms:/SampleQ1?vendor=sonicmqg& amp;priority=5"/>
</port>
</service>
</definitions>

The decision to encode the domain as an optional query property isdriven by the IMS 1.1
specification and its stated goal of domain unification. Once JIMS 1.1 iswidely adopted,
it is expected that the domain will no longer be required by most vendors.

The encoding of propertiesin the query string is vendor-specific. A standard set of
property names is defined in this document, but vendors are free to use their own
encodings. The only restriction is that vendors should not overload any of the reserved
property names.

2.1 IMS Send Properties

In the short term, the scope of what can be set in the query-string is limited to the
perspective of aJM S sender. The following table illustrates the possible settingsin the
guery string.

Property Example Value Comments

vendor “sonic” Optional. Defaultsto JNDI.

host “localhost”

port “2506"

domain “queue”, “topic” | Indicates the type of connection factory and
destination

replyToDestination | “ReplyToQueue” | May be JNDI lookup name or direct
destination name

deliveryMode “persistent”,
“non-persistent”,
“discardable’
ttl “10000” Time-to-live, in ms
priority 0-9 Message priority
waitForResponse “yes’ Can be used in conjunction with

call.setTimeout()?

Again, each vendor may opt not to use the above properties. For instance, a broker
connection URL may be encoded using “brokerURL=tcp://localhost:2506” instead of
“host=loca host& port=2506".

Note that username and password are not standard query properties. Client applications
should set these properties directly on the call object, via call.setUsername(String user)
and call.setPassword(String password), as is done when using Http for transport.

2.1.1 INDI Properties
If the vendor property is omitted, the JIM STransport will assume that secondary |ookup
should be performed using INDI. The following properties apply to INDI only:

Property Example Value Comments

initial ContextFactory | “com.sun.jndi.fscontext.RefFSContextFactory | Optional.

“com.sun.jndi.ldap.L dapCtxFactory”

jndiProviderURL “file://[INDIStore” Optional.
“|dap://localhost: 123"
connectionFactory “MyCF”, Required. May
“com.JM SV endor.TopicConnectionFactory” | be INDI lookup
name or fully
qualified class

name

2.2 Examples

Using Sonic:
jms./SampleQ1?vendor=sonic& domai n=queue& brokerUrl=local host:2506& ...
jms:/Sampl eQ1vendor=sonic;domai n=queue; host=local host; port=2506; ...

Using JNDI:

jms:/MyQ7initial ContextFactory=icf &
jndiProviderURL=tcp://|dap.somewhere.com &
gueueConnectionFactory=MyQCF &
jmsPriority=5 & ...

(note: spaces added for readability)

The connection factory and destination are string properties that may map to a INDI
lookup name. If the IMS provider supports direct instantiation of a CF class, or anamed
destination, then that is allowable as well.

3JMSURL Programming M odel

With the proposed model, callsto control the JM STransport object’s lifecycle are no
longer necessary. In particular, note the absence of calls to construct and shutdown the
JM STransport.

Properties that appear in the query string may be overridden by explicitly setting the
property via call.setProperty(..). For instance, the username and password, though
optional parametersin the query string, will likely be specified using the call object’s
setUsername() and setPassword() methods.

Example: IM S URL -based Service I nvocation
Service service = new Service(new XML StringProvider(wsdd));

/I create anew Call object
Cdl cal =(Call)service.createCal();

I/ populate the call object. In this caseit’s a method invocation with

/I adescription of the parameter list and the return type

call.setOperationName(new QName("urn:xmltoday-delayed-quotes”,
“getQuote”));

call.addParameter("symbol",
XMLTypeXSD_STRING,
ParameterMode.IN);

call.setReturnType(XMLType. XSD_FLOAT);

/I set the jms url

String sampleJmsUrl = “jms;/SampleQ1” +
“&vendor=sonic” +
“&deliverymode=persistent” +
“&priority=5" +
“&replyToDestination=SampleQ2";
call.setTargetEndpointAddress(new java.net.URL (sampleJmsUrl));

/I setting properties explicitly is still supported

/I these override properties specified in the URL

call.setProperty(JIM SConstants. TIME_TO_LIVE, new Long(20000));
call.setProperty(JM SConstants. REPLY DESTINATION, “ReplyToQ");
...

call.setUsername(username);
call .setPassword(password);

/I invoke the call
res = (Float) call.invoke(...);

4 Outstanding | ssues

Reddlivery
How does one check the JM SRedelivered property on receipt of amessage? JMS
propertiestable in call object?

5 Futures

5.1 Listener Properties

In the not-too-distant future, we will have asynchronous callback support and client
notification in the client engine and the client API. When thisis enabled, we will need to
be able to specify alistener and listener traitsin the query-string. Thisislikely to
change as we evolve the API.

Appendix A: Implementation Strategy

The IMS URL implementation is expected to cover two phases. Thefirst phase will add
support for the IMS URL in the transport layer, as described in this proposal.
Implementation details are provided below. The second phase will include changes to the
wsdl2javatool, for auto-generation of stubs containing JIMS URL endpoints.

5.1 Proposed Modifications
The following modifications are required in support of the IMS URL functionality:

1. Registration of the IMS transport class with Axis

Thereis currently no Axis transport registered to handle the “jms” protocol. The
reason JM S support is possible right now is that the JM STransport object is
explicitly created and set on the Call by the client application, so that the transport
lookup is bypassed.

For IMS URL support, however, the transport must be registered using the static
org.apache.axis.client.Call.setTransportForProtocol () method.

2. Registration of the IM S vendor adapter classes

In the current Axis JIM S implementation, the JM STransport instanceistied to a
single IMS vendor implementation (the JM SV endorAdapterFactory will not
create adapters from multiple IMS providers). Once the transport is created, all
messages sent over that transport are handled by the same provider.

In order to support IMS URLSs from multiple vendors using the same
JMSTransport, the IM SV endorAdapterFactory will be enhanced to maintain alist
of vendor adapters, keyed on vendor uri.

3. Creation of an Axis message context with IMS URL properties

The Axis MessageContext is currently created with properties set on the Call
object by the client application. Thiswill not change. However, the

JM STransport.setupM essageContextImpl () method will be modified to also
extract properties from the IMS URL (with help from the vendor adapters).

A base IMS adapter will be provided for parsing the standard JM S properties
from the URL. Vendorswill just need to extend this base class and provide
additional code for extracting vendor-specific properties, if any, from the URL.

4. Shutting down the JM S transport
Once aJMS URL syntax is supported in Axis, the call to explicitly set the

JMSTransport is no longer required in the client application, as the appropriate
transport will be selected based on the protocol specified in the endpoint address.

Axis handles the creation of transport objects (and associated JM S connections)
without requiring direct instantiation of transports by the client application.

Thereis, however, still aneed for the client application to signal transport
shutdown (for instance, to close open JM S connections). The proposed
mechanism for signaling shutdown of the IMS sender is to set the appropriate
property (e.g., QUIT_REQUESTED) in the Call object. Upon receiving a
message with this property set to true, the IM S transport will be shut down.

