Dear Mayte

How do these plots look like when you make them separately for each subject? (In addition, you could colour the dots according to whether the differential expression analysis for the overall dataset calls them 'significant').

Also, if you compute the M values for each patient separately, how does the pairs plot (scatterplot matrix) look like?

On a completely unrelated note, I recently saw a movie about studies with 3 patients: http://www.xtranormal.com/watch/6878253

        Best wishes
        Wolfgang


Il Nov/24/10 7:38 PM, Mayte Suarez-Farinas ha scritto:
Dear All,
I have being working with pair samples for 3 subjects using edgeR package
and I am puzzle with the results of my normalization. After
normalization, the data is skewed towards the LS group, and as a result,
I get much more genes up than down-regulated. We have study this disease
extensively in large samples with microarray and this is not the case
there, so now I am suspicious of my normalization.
I am including teh code and a pdf with the smear plot using the
normalization options in edgeR. On all of them the data looks worst than
after normalization.
If someone can look to what I did and point to any mistake, I will
really appreciate.
I dont know if the point is that I am deleting the unmapped reads before
normalization.
I was instructed as such in the SeqAnswer forum.


## Reading Files
files<- dir(pattern="*\\counts.txt$")
files.pheno<-data.frame(files=files,
group=factor(substr(files,1,2),levels=c("NL","LS")),
Patient=factor(substr(files,3,4)))
PScounts<-readDGE(files.pheno)
colnames(PScounts)<-paste(PScounts$samples$group,PScounts$samples$Patient,sep='-')

##delete unmmaped reads
unmmaped<-c('no_feature','ambiguous','not aligned','too low aQual')
PScounts<-PScounts[-which(rownames(PScounts$counts)%in%unmmaped),]

#Calculate Normalizations
d.PS<- calcNormFactors(PScounts)
pdf('Normalization Plots.pdf',height=10,width=10)
layout(matrix(1:4,2,2,byrow=TRUE))
a<-plotSmear(PScounts,
panel.first=grid(),smooth.scatter=FALSE,main='before normalization')
ma.plot(a$A,a$M,plot.method='add',cex=0)
b<-plotSmear(d.PS, panel.first=grid(),smooth.scatter=FALSE,main='after TMM')
ma.plot(b$A,b$M,plot.method='add',cex=0)
rm(b)
d.PS.2<- calcNormFactors(PScounts,method='RLE')
b<-plotSmear(d.PS, panel.first=grid(),smooth.scatter=FALSE,main='after RLE')
ma.plot(b$A,b$M,plot.method='add',cex=0)
rm(b)
d.PS.3<- calcNormFactors(PScounts,method='quantile')
b<-plotSmear(d.PS.3, panel.first=grid(),smooth.scatter=FALSE,main='after
quantile')
ma.plot(b$A,b$M,plot.method='add',cex=0)
rm(b)
dev.off()

 d.PS$sample ###(after TMM)
files group Patient lib.size norm.factors
LS-25 LS252.counts.txt LS 25 23067191 0.9085
LS-28 LS287.counts.txt LS 28 20684675 0.9056
LS-29 LS292.counts.txt LS 29 19881245 0.9965
NL-25 NL251.counts.txt NL 25 19665929 1.0129
NL-28 NL286.counts.txt NL 28 22938039 1.1554
NL-29 NL291.counts.txt NL 29 20541691 1.0422

 d.PS.2$sample ###after RLE
files group Patient lib.size norm.factors
LS-25 LS252.counts.txt LS 25 23067191 0.9495
LS-28 LS287.counts.txt LS 28 20684675 0.9898
LS-29 LS292.counts.txt LS 29 19881245 1.0385
NL-25 NL251.counts.txt NL 25 19665929 0.9592
NL-28 NL286.counts.txt NL 28 22938039 1.0572
NL-29 NL291.counts.txt NL 29 20541691 1.0104

 d.PS.3$sample ###after quantiles
files group Patient lib.size norm.factors
LS-25 LS252.counts.txt LS 25 23067191 0.8659
LS-28 LS287.counts.txt LS 28 20684675 0.9656
LS-29 LS292.counts.txt LS 29 19881245 1.1302
NL-25 NL251.counts.txt NL 25 19665929 0.8887
NL-28 NL286.counts.txt NL 28 22938039 1.0885
NL-29 NL291.counts.txt NL 29 20541691 1.0939




Mayte Suarez-Farinas
Research Associate, The Rockefeller University
Biostatistician, The Rockefeller University Hospital
1230 York Ave, Box 178,
New York, NY, 10065
+1(212) 327-8213







_______________________________________________
Bioc-sig-sequencing mailing list
[email protected]
https://stat.ethz.ch/mailman/listinfo/bioc-sig-sequencing

_______________________________________________
Bioc-sig-sequencing mailing list
[email protected]
https://stat.ethz.ch/mailman/listinfo/bioc-sig-sequencing

Reply via email to