Update of /cvsroot/boost/boost/libs/function_types/example
In directory 
sc8-pr-cvs3.sourceforge.net:/tmp/cvs-serv18022/function_types/example

Added Files:
        fast_mem_fn.hpp fast_mem_fn_example.cpp interface.hpp 
        interface_example.cpp interpreter.hpp interpreter_example.cpp 
        macro_type_args.hpp macro_type_args_example.cpp result_of.hpp 
        result_of_example.cpp 
Log Message:
libs/function_types/* - check-in


--- NEW FILE: fast_mem_fn.hpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
//
// This example implements a very efficient, generic member function wrapper.
//
//
// Detailed description
// ====================
//
// For most platforms C++ runs on (maybe all hardware platforms, as opposed to
// virtual machines) there are indirect calls that take more time to execute 
// than direct ones. Further calling a function usually takes more time than 
// inlining it at the call site.
//
// A direct call is a machine instruction that calls a subroutine at a known
// address encoded in the instruction itself. C++ compilers usually emit one of
// these instructions for each function call to a nonvirtual function (a call to
// a virtual function requires either two direct calls or one indirect call).
// An indirect call is a machine instruction that calls a subroutine at an 
// address known at runtime. C++ compilers usually emit at least one of these 
// instructions for a call through a callable builtin variable.
//
// It is possible to use callable scalars as non-type template arguments. This
// way the compiler knows which function we want to call when generating the
// code for the call site, so it may inline (if it decides to do so) or use a 
// direct call instead of being forced to use a slow, indirect call.
//
// We define a functor class template that encodes the function to call in its
// type via a non-type template argument. Its (inline declared) overloaded 
// function call operator calls the function through that non-type template 
// argument. In the best case we end up inlining the callee directly at the
// point of the call.
//
// Decomposition of the wrapped member function's type is needed in order to 
// implement argument forwarding (just using a templated call operator we would 
// encounter what is known as "the forwarding problem" [Dimov1]). Further we
// can eliminate unecessary copies for each by-value parameter by using a 
// reference to its const qualified type for the corresponding parameter of the
// wrapper's function call operator.
//
// Finally we provide a macro that does have similar semantics to the function 
// template mem_fn of the Bind [2] library.
// We can't use a function template and use a macro instead, because we use a
// member function pointer that is a compile time constant. So we first have to
// deduce the type and create a template that accepts this type as a non-type 
// template argument, which is passed in in a second step. The macro hides this
// lengthy expression from the user.
//
//
// Limitations
// ===========
//
// The "this-argument" must be specified as a reference.
//
//
// Bibliography
// ============
//
// [Dimov1] Dimov, P., Hinnant H., Abrahams, D. The Forwarding Problem
//          http://std.dkuug.dk/jtc1/sc22/wg21/docs/papers/2002/n1385.htm
//
// [Dimov2] Dimov, P. Documentation of boost::mem_fn
//          http://www.boost.org/libs/bind/mem_fn.html

#ifndef BOOST_EXAMPLE_FAST_MEM_FN_HPP_INCLUDED
#ifndef BOOST_PP_IS_ITERATING


#include <boost/function_types/result_type.hpp>
#include <boost/function_types/function_arity.hpp>
#include <boost/function_types/parameter_types.hpp>
#include <boost/function_types/is_member_function_pointer.hpp>

#include <boost/mpl/transform_view.hpp>
#include <boost/mpl/begin.hpp>
#include <boost/mpl/next.hpp>
#include <boost/mpl/deref.hpp>

#include <boost/utility/enable_if.hpp>

#include "detail/param_type.hpp"

namespace example
{

  namespace ft = boost::function_types;
  namespace mpl = boost::mpl;
  using namespace mpl::placeholders;

  // the functor class template
  template< typename MFPT, MFPT MemberFunction
    , size_t Arity = ::example::ft::function_arity<MFPT>::value
  >
  struct fast_mem_fn;

  // ------- ---- --- -- - - - -

  // deduce type and capture compile time value 
  #define BOOST_EXAMPLE_FAST_MEM_FN(mfp) \
      ::example::make_fast_mem_fn(mfp).make_fast_mem_fn<mfp>()

  template<typename MFPT>
  struct fast_mem_fn_maker
  {
    template<MFPT Callee>
    fast_mem_fn<MFPT,Callee> make_fast_mem_fn()
    {
      return fast_mem_fn<MFPT,Callee>();
    } 
  };

  template<typename MFPT>
      typename boost::enable_if<boost::is_member_function_pointer<MFPT>, 
  fast_mem_fn_maker<MFPT>                                                >::type
  make_fast_mem_fn(MFPT)
  {
    return fast_mem_fn_maker<MFPT>();
  }


  // ------- ---- --- -- - - - -

  namespace detail
  {
    // by-value forwarding optimization
    template<typename T>
    struct parameter_types
      : mpl::transform_view<ft::parameter_types<T>,param_type<_> >
    { }; 
  }

  // ------- ---- --- -- - - - -

  template< typename MFPT, MFPT MemberFunction >
  struct fast_mem_fn<MFPT, MemberFunction, 1>
  {
    // decompose the result and the parameter types (public for introspection)
    typedef typename ft::result_type<MFPT>::type result_type;
    typedef detail::parameter_types<MFPT> parameter_types;
  private:
    // iterate the parameter types 
    typedef typename mpl::begin<parameter_types>::type i0;
  public: 
    // forwarding function call operator
    result_type operator()( typename mpl::deref<i0>::type a0) const
    {
      return (a0.*MemberFunction)();
    };
  };

  template< typename MFPT, MFPT MemberFunction >
  struct fast_mem_fn<MFPT, MemberFunction, 2>
  {
    // decompose the result and the parameter types (public for introspection)
    typedef typename ft::result_type<MFPT>::type result_type;
    typedef detail::parameter_types<MFPT> parameter_types;
  private:
    // iterate the parameter types 
    typedef typename mpl::begin<parameter_types>::type i0;
    typedef typename mpl::next<i0>::type i1;
  public: 
    // forwarding function call operator
    result_type operator()( typename mpl::deref<i0>::type a0
                          , typename mpl::deref<i1>::type a1) const
    {
      return (a0.*MemberFunction)(a1);
    };
  };

  template< typename MFPT, MFPT MemberFunction >
  struct fast_mem_fn<MFPT, MemberFunction, 3>
  {
    // decompose the result and the parameter types (public for introspection)
    typedef typename ft::result_type<MFPT>::type result_type;
    typedef detail::parameter_types<MFPT> parameter_types;
  private:
    // iterate the parameter types 
    typedef typename mpl::begin<parameter_types>::type i0;
    typedef typename mpl::next<i0>::type i1;
    typedef typename mpl::next<i1>::type i2;
  public: 
    // forwarding function call operator
    result_type operator()( typename mpl::deref<i0>::type a0
                          , typename mpl::deref<i1>::type a1
                          , typename mpl::deref<i2>::type a2) const
    {
      return (a0.*MemberFunction)(a1,a2);
    };
  };

  // ...
}

// ------- ---- --- -- - - - -

// preprocessor-based code generator to continue the repetitive part, above

#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/iteration/iterate.hpp>
#include <boost/preprocessor/iteration/local.hpp>
#include <boost/preprocessor/repetition/enum_shifted_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>

namespace example
{
  #if BOOST_FT_MAX_ARITY >= 4
  #   define  BOOST_PP_FILENAME_1 "fast_mem_fn.hpp"
  #   define  BOOST_PP_ITERATION_LIMITS (4,BOOST_FT_MAX_ARITY)
  #   include BOOST_PP_ITERATE()
  #endif
}

#define BOOST_EXAMPLE_FAST_MEM_FN_HPP_INCLUDED
#else

  #define N BOOST_PP_FRAME_ITERATION(1)
  template< typename MFPT, MFPT MemberFunction >
  struct fast_mem_fn<MFPT, MemberFunction, N >
  {
    // decompose the result and the parameter types (public for introspection)
    typedef typename ft::result_type<MFPT>::type result_type;
    typedef detail::parameter_types<MFPT> parameter_types;
  private:
    // iterate the parameter types 
    typedef typename mpl::begin<parameter_types>::type i0;
    #define  BOOST_PP_LOCAL_LIMITS (0,N-2)
    #define  BOOST_PP_LOCAL_MACRO(j) \
    typedef typename mpl::next< i ## j >::type BOOST_PP_CAT(i,BOOST_PP_INC(j)) ;
    #include BOOST_PP_LOCAL_ITERATE()
  public: 
    // forwarding function call operator
    result_type operator()( 
        BOOST_PP_ENUM_BINARY_PARAMS(N, typename mpl::deref<i,>::type a) )  const
    {
      return (a0.*MemberFunction)(BOOST_PP_ENUM_SHIFTED_PARAMS(N,a));
    };
  };
  #undef N

#endif
#endif


--- NEW FILE: fast_mem_fn_example.cpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
// See fast_mem_fn.hpp in this directory for details.

#include <vector>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <functional>

#include <boost/timer.hpp>
#include <boost/mem_fn.hpp>

#include "fast_mem_fn.hpp"

// test class that holds a single integer with getter function
class test
{
  int val_id;
public:

  explicit test(int id)
    : val_id(id)
  { }

  int id() const
  { return val_id; }

};

// STL style comparator that applies the CriterionExtractor function to both 
// operands and compares the results with Comparator
template<typename CriterionExtractor, typename Comparator>
class test_compare
{
  CriterionExtractor fnc_criterion;
  Comparator         fnc_compare;
public:

  explicit test_compare(CriterionExtractor criterion, Comparator compare)
    : fnc_criterion(criterion)
    , fnc_compare(compare)
  { }

  template<typename T>
  inline bool operator()(T const & lhs, T const & rhs) const
  {
    return fnc_compare(fnc_criterion(lhs),fnc_criterion(rhs));
  }
};

// helper function to construct an instance of the test_compare comparator.
template<typename CriterionExtractor, typename Comparator>
test_compare<CriterionExtractor,Comparator> 
make_test_compare(CriterionExtractor criterion, Comparator compare)
{
  return test_compare<CriterionExtractor,Comparator>(criterion,compare);
}

// the test case: sort N test objects by id
//
// the objects are in ascending order before the test run and in descending
// order after it

static const unsigned N = 2000000;

typedef std::vector<test> test_vector;


void setup_test(test_vector & v)
{
  v.clear();
  v.reserve(N);
  for (unsigned i = 0; i < N; ++i)
    v.push_back(test(i));
}

template<typename F> void do_test(test_vector & v, F criterion)
{
  std::sort(v.begin(),v.end(),make_test_compare(criterion,std::greater<int>()));
  assert(v.begin()->id() == N-1);
}


// compare performance with boost::mem_fn
int main()
{
  test_vector v;
  boost::timer t;
  double time1, time2;

  std::cout << 
      "Test case: sorting " << N << " objects.\n\n"
      "Criterion accessor called with | elasped seconds\n"
      "-------------------------------|----------------" << std::endl;

  setup_test(v);
  t.restart();
  do_test(v, BOOST_EXAMPLE_FAST_MEM_FN(& test::id));
  time1 = t.elapsed();
  std::cout << "fast_mem_fn                    | " << time1 << std::endl;

  setup_test(v);
  t.restart();
  do_test(v, boost::mem_fn(& test::id));
  time2 = t.elapsed();
  std::cout << "mem_fn                         | " << time2 << std::endl;

  std::cout << '\n' << (time2/time1-1)*100 << "% speedup" << std::endl;

  return 0;
}


--- NEW FILE: interface.hpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
//
// This example implements interfaces. 
// 
// Detailed description
// ====================
//
// An interface is a collection of member function prototypes that may be
// implemented by classes. Objects of classes that implement the interface can 
// then be assigned to an interface variable through which the interface's 
// functions can be called.
//
// Interfaces are a feature of the Java programming language [Gosling] and the
// most obvious way to model interfaces in C++ is (multiple) inheritance.
// Using inheritance for this purpose, however, is neither the most efficient 
// nor the most flexible solution, because:
//
//   - all functions must be virtual,
//
//     => a function that calls another function of the interface must do so
//        via virtual dispatch (as opposed to inlining)
//     => a class can not implement an interface's (overloaded) function via
//        a function template
//
//   - inhertitance is intrusive
//
//     => object size increases 
//     => client's are always polymorphic
//     => dependencies cause tighter coupling
//
// Fortunately it is possible to eliminate all the drawbacks mentioned above
// based on an alternative implementation proposed by David Abrahams. 
// We'll add some detail to the original scheme (see [Abrahams]) such as 
// support for overloaded and const qualified functions.
// The implementation in this example uses Boost.FunctionTypes to shift 
// metaprogramming code from the preprocessor into templates, to reduce 
// preprocessing time and increase maintainability.
//
// 
// Limitations
// ===========
//
// There is no lifetime management as implemented by the Boost candidate
// Interfaces library (see [Turkanis]).
//
// This example does not compile with Visual C++. Template argument deduction
// from the result of the address-of operator does not work properly with this
// compiler. It is possible to partially work around the problem, but it isn't
// done here for the sake of readability.
//
//
// Bibliography
// ============
//
// [Gosling]  Gosling, J., Joy, B., Steele, G. The Java Language Specification
//   http://java.sun.com/docs/books/jls/third_edition/html/interfaces.html
//
// [Abrahams] Abrahams, D. Proposal: interfaces, Post to newsgroup comp.std.c++
//   http://groups.google.com/group/comp.std.c++/msg/85af30a61bf677e4
//
// [Turkanis] Turkanis, J., Diggins, C. Boost candidate Interfaces library
//   http://www.kangaroologic.com/interfaces/libs/interfaces/doc/index.html

#include <cstddef>

#include <boost/function_types/function_pointer.hpp>
#include <boost/function_types/member_function_pointer.hpp>

#include <boost/config.hpp>
#include <boost/detail/workaround.hpp>

#include <boost/utility/addressof.hpp>

#include <boost/mpl/at.hpp>
#include <boost/mpl/vector.hpp>
#include <boost/mpl/joint_view.hpp>
#include <boost/mpl/single_view.hpp>
#include <boost/mpl/transform_view.hpp>

#include <boost/preprocessor/seq/seq.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/preprocessor/seq/elem.hpp>
#include <boost/preprocessor/seq/size.hpp>
#include <boost/preprocessor/tuple/elem.hpp>
#include <boost/preprocessor/arithmetic/dec.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/facilities/empty.hpp>
#include <boost/preprocessor/facilities/identity.hpp>
#include <boost/preprocessor/punctuation/comma_if.hpp>
#include <boost/preprocessor/iteration/local.hpp>
#include <boost/preprocessor/repetition/enum.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>

#include "detail/param_type.hpp"

namespace example 
{
  namespace ft = boost::function_types;
  namespace mpl = boost::mpl;
  using namespace mpl::placeholders;

  // join a single type and an MPL-sequence
  // in some ways similar to mpl::push_front (but mpl::push_front requires
  // an MPL Extensible Sequence and this template does not)
  template<typename T, typename Seq>
  struct concat_view
    : mpl::joint_view<mpl::single_view<T>, Seq>
  { };

  // metafunction returning a function pointer type for a vtable entry
  template<typename Inf>
  struct vtable_entry
    : ft::function_pointer
      < concat_view< typename Inf::result, mpl::transform_view< 
            typename Inf::params, param_type<_> > > >
  { };

  // the expression '& member<MetaInfo,Tag>::wrap<& Class::Function> ' in an
  // assignment context binds the member function Function of Class with the
  // properties described by MetaInfo and Tag to the corresponding vtable 
  // entry
  template<typename Inf, typename Tag>
  struct member
  {
    typedef typename ft::member_function_pointer 
      < concat_view<typename Inf::result,typename Inf::params>,Tag
      >::type
    mem_func_ptr;

    typedef typename mpl::at_c<typename Inf::params,0>::type context;

    template<mem_func_ptr MemFuncPtr>
    static typename Inf::result wrap(void* c)
    {
      return (reinterpret_cast<context*>(c)->*MemFuncPtr)();
    }
    template<mem_func_ptr MemFuncPtr, typename T0>
    static typename Inf::result wrap(void* c, T0 a0)
    {
      return (reinterpret_cast<context*>(c)->*MemFuncPtr)(a0);
    }
    template<mem_func_ptr MemFuncPtr, typename T0, typename T1>
    static typename Inf::result wrap(void* c, T0 a0, T1 a1)
    {
      return (reinterpret_cast<context*>(c)->*MemFuncPtr)(a0,a1);
    }
    // continue with the preprocessor (the scheme should be clear, by now)
    #define  BOOST_PP_LOCAL_MACRO(n)                                           \
    template<mem_func_ptr MemFuncPtr, BOOST_PP_ENUM_PARAMS(n,typename T)>      \
    static typename Inf::result wrap(void* c,                                  \
        BOOST_PP_ENUM_BINARY_PARAMS(n,T,a))                                    \
    {                                                                          \
      return (reinterpret_cast<context*>(c)->*MemFuncPtr)(                     \
        BOOST_PP_ENUM_PARAMS(n,a) );                                           \
    }
    #define  BOOST_PP_LOCAL_LIMITS (3,BOOST_FT_MAX_ARITY-1)
    #include BOOST_PP_LOCAL_ITERATE()
  };

  // extract a parameter by index
  template<typename Inf, std::size_t Index>
  struct param
    : param_type< typename mpl::at_c< typename Inf::params,Index>::type >
  { };
}

// the interface definition on the client's side
#define BOOST_EXAMPLE_INTERFACE(name,def)                                      \
    class name                                                                 \
    {                                                                          \
      struct vtable                                                            \
      {                                                                        \
        BOOST_EXAMPLE_INTERFACE__MEMBERS(def,VTABLE)                           \
      };                                                                       \
                                                                               \
      vtable const * ptr_vtable;                                               \
      void * ptr_that;                                                         \
                                                                               \
      template<class T> struct vtable_holder                                   \
      {                                                                        \
        static vtable const val_vtable;                                        \
      };                                                                       \
                                                                               \
    public:                                                                    \
                                                                               \
      template<class T>                                                        \
      inline name (T & that)                                                   \
        : ptr_vtable(& vtable_holder<T>::val_vtable)                           \
        , ptr_that(boost::addressof(that))                                     \
      { }                                                                      \
                                                                               \
      BOOST_EXAMPLE_INTERFACE__MEMBERS(def,FUNCTION)                           \
    };                                                                         \
                                                                               \
    template<typename T>                                                       \
    name ::vtable const name ::vtable_holder<T>::val_vtable                    \
        = { BOOST_EXAMPLE_INTERFACE__MEMBERS(def,INIT_VTABLE) }


#ifdef BOOST_PP_NIL // never defined -- a comment with syntax highlighting

BOOST_EXAMPLE_INTERFACE( interface_x,
  (( a_func, (void)(int), const_qualified ))
  (( another_func, (int), non_const   )) 
);

// expands to:
class interface_x 
{ 
  struct vtable 
  {
    // meta information for first function 
    template<typename T = void*> struct inf0 
    {
      typedef void result; 
      typedef ::boost::mpl::vector< T, int > params; 
    };
    // function pointer with void* context pointer and parameters optimized
    // for forwarding 
    ::example::vtable_entry<inf0<> >::type func0; 

    // second function
    template<typename T = void*> struct inf1 
    {
      typedef int result; 
      typedef ::boost::mpl::vector< T > params; 
    }; 
    ::example::vtable_entry<inf1<> >::type func1; 
  }; 

  // data members
  vtable const * ptr_vtable; 
  void * ptr_that; 

  // this template is instantiated for every class T this interface is created
  // from, causing the compiler to emit an initialized vtable for this type 
  // (see aggregate assignment, below)
  template<class T> struct vtable_holder 
  {
    static vtable const val_vtable; 
  }; 

public: 

  // converting ctor, creates an interface from an arbitrary class
  template<class T> 
  inline interface_x (T & that) 
    : ptr_vtable(& vtable_holder<T>::val_vtable)
    , ptr_that(boost::addressof(that)) 
  { } 

  // the member functions from the interface definition, parameters are 
  // optimized for forwarding

  inline vtable::inf0<> ::result a_func (
      ::example::param<vtable::inf0<>,1>::type p0) const 
  { 
    return ptr_vtable-> func0(ptr_that , p0); 
  } 

  inline vtable::inf1<> ::result another_func () 
  {
    return ptr_vtable-> func1(ptr_that ); 
  } 
}; 

template<typename T> 
interface_x ::vtable const interface_x ::vtable_holder<T>::val_vtable = 
{
  // instantiate function templates that wrap member function pointers (which
  // are known at compile time) by taking their addresses in assignment to
  // function pointer context
  & ::example::member< vtable::inf0<T>, ::example::ft:: const_qualified >
        ::template wrap < &T:: a_func > 
, & ::example::member< vtable::inf1<T>, ::example::ft:: non_const >
        ::template wrap < &T:: another_func > 
};
#endif

// preprocessing code details

// iterate all of the interface's members and invoke a macro (prefixed with
// BOOST_EXAMPLE_INTERFACE_)
#define BOOST_EXAMPLE_INTERFACE__MEMBERS(seq,macro)                            \
    BOOST_PP_REPEAT(BOOST_PP_SEQ_SIZE(seq),                                    \
        BOOST_EXAMPLE_INTERFACE__ ## macro,seq)

// extract signature sequence from entry 
#define BOOST_EXAMPLE_INTERFACE__VTABLE(z,i,seq)                               \
    BOOST_EXAMPLE_INTERFACE__VTABLE_I(z,i,                                     \
        BOOST_PP_TUPLE_ELEM(3,1,BOOST_PP_SEQ_ELEM(i,seq)))

// split the signature sequence result/params and insert T at the beginning of
// the params part
#define BOOST_EXAMPLE_INTERFACE__VTABLE_I(z,i,seq)                             \
    BOOST_EXAMPLE_INTERFACE__VTABLE_II(z,i,                                    \
        BOOST_PP_SEQ_HEAD(seq),(T)BOOST_PP_SEQ_TAIL(seq))

// emit the meta information structure and function pointer declaration
#define BOOST_EXAMPLE_INTERFACE__VTABLE_II(z,i,result_type,param_types)        \
    template<typename T = void*>                                               \
    struct BOOST_PP_CAT(inf,i)                                                 \
    {                                                                          \
      typedef result_type result;                                              \
      typedef ::boost::mpl::vector< BOOST_PP_SEQ_ENUM(param_types) > params;   \
    };                                                                         \
    ::example::vtable_entry<BOOST_PP_CAT(inf,i)<> >::type BOOST_PP_CAT(func,i);

// extract tuple entry from sequence and precalculate the name of the function
// pointer variable
#define BOOST_EXAMPLE_INTERFACE__INIT_VTABLE(z,i,seq)                          \
    BOOST_EXAMPLE_INTERFACE__INIT_VTABLE_I(i,seq,BOOST_PP_CAT(func,i),         \
        BOOST_PP_SEQ_ELEM(i,seq))

// emit a function pointer expression that encapsulates the corresponding
// member function of T
#define BOOST_EXAMPLE_INTERFACE__INIT_VTABLE_I(i,seq,func,desc)                \
    BOOST_PP_COMMA_IF(i) & ::example::member< BOOST_PP_CAT(vtable::inf,i)<T>,  \
        ::example::ft:: BOOST_PP_TUPLE_ELEM(3,2,desc) >::template wrap         \
                                          < &T:: BOOST_PP_TUPLE_ELEM(3,0,desc) >
        
// extract tuple entry from sequence
#define BOOST_EXAMPLE_INTERFACE__FUNCTION(z,i,seq)                             \
    BOOST_EXAMPLE_INTERFACE__FUNCTION_I(z,i,BOOST_PP_SEQ_ELEM(i,seq))

// precalculate function name, arity, name of meta info structure and cv-
// qualifiers
#define BOOST_EXAMPLE_INTERFACE__FUNCTION_I(z,i,desc)                          \
    BOOST_EXAMPLE_INTERFACE__FUNCTION_II(z,i,                                  \
        BOOST_PP_TUPLE_ELEM(3,0,desc),                                         \
        BOOST_PP_DEC(BOOST_PP_SEQ_SIZE(BOOST_PP_TUPLE_ELEM(3,1,desc))),        \
        BOOST_PP_CAT(vtable::inf,i)<>,                                         \
        BOOST_PP_CAT(BOOST_EXAMPLE_INTERFACE___,BOOST_PP_TUPLE_ELEM(3,2,desc)) \
    )

// emit the definition for a member function of the interface
#define BOOST_EXAMPLE_INTERFACE__FUNCTION_II(z,i,name,arity,types,cv)          \
    inline types ::result name                                                 \
      (BOOST_PP_ENUM_ ## z (arity,BOOST_EXAMPLE_INTERFACE__PARAM,types)) cv()  \
    {                                                                          \
      return ptr_vtable-> BOOST_PP_CAT(func,i)(ptr_that                        \
          BOOST_PP_ENUM_TRAILING_PARAMS_Z(z,arity,p));                         \
    }

// emit a parameter of the function definition
#define BOOST_EXAMPLE_INTERFACE__PARAM(z,j,types)                              \
    ::example::param<types,BOOST_PP_INC(j)>::type BOOST_PP_CAT(p,j)

// helper macros to map 'const_qualified' to 'const' an 'non_const' to ''
#define BOOST_EXAMPLE_INTERFACE___const_qualified BOOST_PP_IDENTITY(const)
#define BOOST_EXAMPLE_INTERFACE___non_const BOOST_PP_EMPTY



--- NEW FILE: interface_example.cpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
// See interface.hpp in this directory for details.

#include <iostream>

#include "interface.hpp"


BOOST_EXAMPLE_INTERFACE( interface_x,
  (( a_func, (void)(int) , const_qualified ))
  (( a_func, (void)(long), const_qualified ))
  (( another_func, (int) , non_const   )) 
);


// two classes that implement interface_x

struct a_class
{
  void a_func(int v) const
  {
    std::cout << "a_class::void a_func(int v = " << v << ")" << std::endl;
  }

  void a_func(long v) const
  {
    std::cout << "a_class::void a_func(long v = " << v << ")" << std::endl;
  }

  int another_func()
  {
    std::cout << "a_class::another_func() = 3" << std::endl;
    return 3;
  } 
};

struct another_class
{
  // note: overloaded a_func implemented as a function template
  template<typename T>
  void a_func(T v) const
  {
    std::cout << 
      "another_class::void a_func(T v = " << v << ")" 
      "  [ T = " << typeid(T).name() << " ]" << std::endl;
  }

  int another_func()
  {
    std::cout << "another_class::another_func() = 5" << std::endl;
    return 5;
  } 
};


// both classes above can be assigned to the interface variable and their
// member functions can be called through it
int main()
{
  a_class x;
  another_class y;

  interface_x i(x);
  i.a_func(12);
  i.a_func(77L);
  i.another_func();

  i = y;
  i.a_func(13);
  i.a_func(21L);
  i.another_func();
}


--- NEW FILE: interpreter.hpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
//
// This example implements a simple batch-style interpreter that is capable of
// calling functions previously registered with it. The parameter types of the
// functions are used to control the parsing of the input.
//
// Implementation description
// ==========================
//
// When a function is registered, an 'invoker' template is instantiated with
// the function's type. The 'invoker' fetches a value from the 'token_parser' 
// for each parameter of the function into a tuple and finally invokes the the
// function with these values as arguments. The invoker's entrypoint, which
// is a function of the callable builtin that describes the function to call and
// a reference to the 'token_parser', is partially bound to the registered 
// function and put into a map so it can be found by name during parsing.

#include <map>
#include <string>
#include <stdexcept>

#include <boost/token_iterator.hpp>
#include <boost/token_functions.hpp>

#include <boost/lexical_cast.hpp>

#include <boost/bind.hpp>
#include <boost/function.hpp>

#include <boost/type_traits/remove_cv.hpp>
#include <boost/type_traits/remove_reference.hpp>

#include <boost/fusion/algorithm/transformation/push_back.hpp>
#include <boost/fusion/sequence/container/list/cons.hpp>
#include <boost/fusion/functional/invocation/invoke.hpp>

#include <boost/mpl/begin.hpp>
#include <boost/mpl/end.hpp>
#include <boost/mpl/next.hpp>
#include <boost/mpl/deref.hpp>

#include <boost/utility/enable_if.hpp>

#include <boost/function_types/is_nonmember_callable_builtin.hpp>
#include <boost/function_types/parameter_types.hpp>

namespace example
{
  namespace fusion = boost::fusion;
  namespace ft = boost::function_types;
  namespace mpl = boost::mpl;

  class interpreter
  {
    class token_parser; 
    typedef boost::function<void(token_parser &)> invoker_function;
    typedef std::map<std::string, invoker_function> dictionary;

    dictionary map_invokers;
  public:
    // Registers a function with the interpreter.
    template<typename Function>
    typename boost::enable_if< ft::is_nonmember_callable_builtin<Function> 
    >::type register_function(std::string const & name, Function f);

    // Parse input for functions to call.
    void parse_input(std::string const & text) const;

  private:
    template< typename Function
    , class From = typename mpl::begin< ft::parameter_types<Function> >::type
    , class To   = typename mpl::end< ft::parameter_types<Function> >::type
    > 
    struct invoker;
  };

  class interpreter::token_parser
  {
    typedef boost::token_iterator_generator< 
        boost::char_separator<char> >::type token_iterator;

    token_iterator itr_at, itr_to;
  public:

    token_parser(token_iterator from, token_iterator to)
      : itr_at(from), itr_to(to)
    { }

  private:
    template<typename T>
    struct remove_cv_ref
      : boost::remove_cv< typename boost::remove_reference<T>::type >
    { };
  public:
    // Returns a token of given type.
    // We just apply boost::lexical_cast to whitespace separated string tokens
    // for simplicity.
    template<typename RequestedType> 
    typename remove_cv_ref<RequestedType>::type get()
    {
      if (! this->has_more_tokens())
        throw std::runtime_error("unexpected end of input");

      try
      {
        typedef typename remove_cv_ref<RequestedType>::type result_type;
        result_type result = boost::lexical_cast
            <typename remove_cv_ref<result_type>::type>(*this->itr_at); 
        ++this->itr_at; 
        return result;
      }

      catch (boost::bad_lexical_cast &)
      { throw std::runtime_error("invalid argument: " + *this->itr_at); }
    }

    // Any more tokens?
    bool has_more_tokens() const { return this->itr_at != this->itr_to; }
  };

  template<typename Function, class From, class To>
  struct interpreter::invoker
  {
    // add an argument to a Fusion cons-list for each parameter type
    template<typename Args>
    static inline 
    void apply(Function func, token_parser & parser, Args const & args)
    {
      typedef typename mpl::deref<From>::type arg_type;

      invoker<Function, typename mpl::next<From>::type, To>::apply
          ( func, parser, fusion::push_back(args, parser.get<arg_type>()) );
    }
  };

  template<typename Function, class To>
  struct interpreter::invoker<Function,To,To>
  {
    // the argument list is complete, now call the function
    template<typename Args>
    static inline 
    void apply(Function func, token_parser &, Args const & args)
    {
      fusion::invoke(func,args);
    }
  };

  template<typename Function>
  typename boost::enable_if< ft::is_nonmember_callable_builtin<Function> >::type
  interpreter::register_function(std::string const & name, Function f)
  {
    // instantiate and store the invoker by name
    this->map_invokers[name] = boost::bind( 
        & invoker<Function>::template apply<fusion::nil>, f,_1,fusion::nil() );
  }


  void interpreter::parse_input(std::string const & text) const
  {
    boost::char_separator<char> s(" \t\n\r");

    token_parser parser
      ( boost::make_token_iterator<std::string>(text.begin(), text.end(), s)
      , boost::make_token_iterator<std::string>(text.end()  , text.end(), s) );

    while (parser.has_more_tokens())
    {
      // read function name
      std::string func_name = parser.get<std::string>();

      // look up function
      dictionary::const_iterator entry = map_invokers.find( func_name );
      if (entry == map_invokers.end())
        throw std::runtime_error("unknown function: " + func_name); 
   
      // call the invoker which controls argument parsing 
      entry->second(parser);
    }
  }

}


--- NEW FILE: interpreter_example.cpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------

#include <string>
#include <iostream>
#include <stdexcept>

#include "interpreter.hpp"

void echo(std::string const & s)
{
  std::cout << s << std::endl;
}

void add(int a, int b)
{
  std::cout << a + b << std::endl;
}

void repeat(std::string const & s, int n)
{
  while (--n >= 0) std::cout << s;
  std::cout << std::endl; 
}

int main()
{
  example::interpreter interpreter;

  interpreter.register_function("echo", & echo);
  interpreter.register_function("add", & add);
  interpreter.register_function("repeat", & repeat);

  std::string line = "nonempty";
  while (! line.empty())
  {
    std::cout << std::endl << "] ", std::getline(std::cin,line);

    try                          
    {
      interpreter.parse_input(line);
    }
    catch (std::runtime_error &error) 
    { 
      std::cerr << error.what() << std::endl; 
    }
  }

  return 0;
}


--- NEW FILE: macro_type_args.hpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
//
// This example implements a utility to accept a type expression, that may
// contain commas to a macro.
//
// 
// Detailed description
// ====================
//
// Accepting a type as macro argument can cause problems if the type expression
// contains commas:
//
//    #define MY_MACRO(a_type)
//    ...
//    MY_MACRO(std::map<int,int>)  // ERROR (wrong number of macro arguments)
//
// This problem can be solved by pasing using a parenthesized type
//
//    MY_MACRO((std::map<int,int>) // OK
//
// but then there is no way to remove the parentheses in the macro argument
// with the preprocessor.
// We can, however, form a pointer to a function with a single argument (the
// parentheses become part of the type) and extract the argument with template
// metaprogramming:
//
//   // Inside the macro definition
//
//   typename mpl::front< parameter_types<void(*)a_type> >::type 
//
// This code snippet does not read too expressive so we use another macro
// to encapsulate the solution:
//
//   // Inside the macro definition
//
//   BOOST_EXAMPLE_MACRO_TYPE_ARGUMENT(a_type)
// 
// As a generalization of this technique we can accept a comma-separated list of
// types. Omitting the mpl::front invocation gives us an MPL-sequence.
//
// 
// Limitations
// ===========
//
// - only works for types that are valid function arguments
//
// Acknowledgments
// ===============
//
// Thanks go to Dave Abrahams for letting me know this technique.

#ifndef BOOST_EXAMPLE_MACRO_TYPE_ARGUMENT_HPP_INCLUDED
#define BOOST_EXAMPLE_MACRO_TYPE_ARGUMENT_HPP_INCLUDED

#include <boost/function_types/parameter_types.hpp>
#include <boost/mpl/front.hpp>

#define BOOST_EXAMPLE_MACRO_TYPE_ARGUMENT(parenthesized_type)                  \
    boost::mpl::front<                                                         \
        BOOST_EXAMPLE_MACRO_TYPE_LIST_ARGUMENT(parenthesized_type) >::type

#define BOOST_EXAMPLE_MACRO_TYPE_LIST_ARGUMENT(parenthesized_types)            \
  ::boost::function_types::parameter_types< void(*) parenthesized_types >


#endif


--- NEW FILE: macro_type_args_example.cpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
// See macro_type_arugment.hpp in this directory for details.

#include <string>
#include <typeinfo>
#include <iostream>

#include <boost/mpl/begin_end.hpp>
#include <boost/mpl/deref.hpp>

#include "macro_type_args.hpp"


#define TYPE_NAME(parenthesized_type) \
    typeid(BOOST_EXAMPLE_MACRO_TYPE_ARGUMENT(parenthesized_type)).name()

namespace example
{
  namespace mpl = boost::mpl;

  template<class Curr, class End>
  struct mpl_seq_to_string_impl
  {
    static std::string get(std::string const & prev)
    {
      typedef typename mpl::next<Curr>::type next_pos;
      typedef typename mpl::deref<Curr>::type type;

      return mpl_seq_to_string_impl<next_pos,End>::get(
          prev + (prev.empty()? '\0' : ',') + typeid(type).name() );
    }
  };
  template<class End>
  struct mpl_seq_to_string_impl<End, End>
  {
    static std::string get(std::string const & prev)
    {
      return prev;
    }
  };

  template<class Seq>
  std::string mpl_seq_to_string()
  {
    typedef typename mpl::begin<Seq>::type begin;
    typedef typename mpl::end<Seq>::type end;

    return mpl_seq_to_string_impl<begin, end>::get("");
  }

}

#define TYPE_NAMES(parenthesized_types) \
    ::example::mpl_seq_to_string< \
        BOOST_EXAMPLE_MACRO_TYPE_LIST_ARGUMENT(parenthesized_types) >()

int main()
{
  std::cout << TYPE_NAME((int)) << std::endl;

  std::cout << TYPE_NAMES((int,char)) << std::endl;
  std::cout << TYPE_NAMES((int,char,long)) << std::endl;

}


--- NEW FILE: result_of.hpp ---

// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
//
// Reimplementation of the Boost result_of utility (see [Gregor01] and 
// [Gregor02]).
//
//
// Detailed description
// ====================
//
// This example implements the functionality of the Boost result_of utility.
// Because of FunctionTypes we get away without repetitive code and the Boost
// Preprocessor library.
//
//
// Bibliography
// ============
//
// [Gregor01] Gregor, D. The Boost result_of utility
//            http://www.boost.org/libs/utility
//
// [Gregor02] Gregor, D. A uniform method for computing function object return
//            types (revision 1)
//            http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1454.html

#include <boost/function_types/result_type.hpp>
#include <boost/function_types/is_callable_builtin.hpp>

#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/has_xxx.hpp>

namespace example
{
  namespace ft = boost::function_types;
  namespace mpl = boost::mpl;

  template<typename F> struct result_of;

  namespace detail
  {
    BOOST_MPL_HAS_XXX_TRAIT_DEF(result_type)

    template<typename F>
    struct result_type_member
    {
      typedef typename F::result_type type;
    };

    template<typename F, typename Desc>
    struct result_member_template
    {
      typedef typename F::template result<Desc>::type type;
    };

#if !BOOST_WORKAROUND(__BORLANDC__,BOOST_TESTED_AT(0x564))
    template<typename F> 
    struct result_member_template< F, F(void) > 
    { 
      typedef void type; 
    };
#endif

    template<typename F, typename Desc>
    struct result_of_impl
      : mpl::eval_if
        < ft::is_callable_builtin<F>
        , ft::result_type<F>
        , mpl::eval_if
          < has_result_type<F> 
          , result_type_member<F>
          , result_member_template<F,Desc>
        > > 
    { };
  }

  template<typename Desc>
  struct result_of
    : detail::result_of_impl< typename ft::result_type<Desc>::type, Desc >
  { };
}


--- NEW FILE: result_of_example.cpp ---

// (C) Copyright Douglas Gregor 2003-2004.
// (C) Copyright Tobias Schwinger
//
// Use modification and distribution are subject to the boost Software License,
// Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt).

//------------------------------------------------------------------------------
// This file is a modified copy of the original Boost.ResultOf test-suite.
// See result_of.hpp in this directory for details.


#include "result_of.hpp"

#include <utility>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>

struct int_result_type { typedef int result_type; };

struct int_result_of
{
  template<typename F> struct result { typedef int type; };
};

struct int_result_type_and_float_result_of
{
  typedef int result_type;
  template<typename F> struct result { typedef float type; };
};

struct X {};

int main()
{
  using namespace boost;
  namespace e = example;

  typedef int (*func_ptr)(float, double);
  typedef int (&func_ref)(float, double);
  typedef int (X::*mem_func_ptr)(float);
  typedef int (X::*mem_func_ptr_c)(float) const;
  typedef int (X::*mem_func_ptr_v)(float) volatile;
  typedef int (X::*mem_func_ptr_cv)(float) const volatile;

  BOOST_STATIC_ASSERT((is_same<e::result_of<int_result_type(float)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<int_result_of(double)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<int_result_of(void)>::type, 
void>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<const int_result_of(double)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<volatile 
int_result_of(void)>::type, void>::value));
  
BOOST_STATIC_ASSERT((is_same<e::result_of<int_result_type_and_float_result_of(char)>::type,
 int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<func_ptr(char, float)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<func_ref(char, float)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<mem_func_ptr(X,char)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<mem_func_ptr_c(X,char)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<mem_func_ptr_v(X,char)>::type, 
int>::value));
  BOOST_STATIC_ASSERT((is_same<e::result_of<mem_func_ptr_cv(X,char)>::type, 
int>::value));
  return 0;
}


-------------------------------------------------------------------------
This SF.net email is sponsored by DB2 Express
Download DB2 Express C - the FREE version of DB2 express and take
control of your XML. No limits. Just data. Click to get it now.
http://sourceforge.net/powerbar/db2/
_______________________________________________
Boost-cvs mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/boost-cvs

Reply via email to