I note that the 'precision' number of digits in lexical cast is obtained from digits10 +1
if(std::numeric_limits<Target>::is_specialized) { stream.precision(std::numeric_limits<Target>::digits10 + 1); } If, as I believe correct, the objective is to get all digits that can be significant, and can be read back in without loss of precision, this isn't always quite right according to: "Lecture notes on the status of IEEE 754 standard for binary floating point arithmetic" William Kahan http://http.cs.berkley.edu/~wkahan/ieee754status/ieee754.ps gives formula for number of decimal digits which are guaranteed to be correct on output and required for input to achieve maximum possible precision as a function of the number of significand bits (given by std::number_limits<FPType>::digits). In C++ the full formula is: int significant_digits10 = int(ceil(1 + float_significand_digits * log10Two)); and using this formula : std::numeric_limits<float>::digits = 24 significand bits std::numeric_limits<float>::digits10 = 6 floor(float_significand_digits -1) * log10(2) = 6 ceil(1 + float_significand_digits * log10(2) = 9 all significant bits (note that the existing code gives 7 here, which is 2 too few) std::numeric_limits<double>::digits = 53 std::numeric_limits<double>::digits10 = 15 floor(double_significand_digits -1) * log10(2) = 15 ceil(1 + double_significand_digits * log10(2)) = 17 (note that the existing lecial_cast.hpp code gives 16 here, which is 1 too few) 32 significand bits digits10 = 6 significant_digits10 = 9 53 significand bits digits10 = 15 significant_digits10 = 17 64 significand bits digits10 = 18 significant_digits10 = 21 106 significand bits digits10 = 31 significant_digits10 = 33 113 significand bits digits10 = 33 significant_digits10 = 36 128 significand bits digits10 = 38 significant_digits10 = 40 (note that the rest are a few too few) I have proposed before that numeric limits should have another item called, perhaps, significant_digits10 returning these useful values, but meanwhile I suggest that following the style of boost/limits.h BOOST_STL_DECLARE_LIMITS_MEMBER(int, digits10, (digits * 301) / 1000); // log 2 = 0.301029995664... The integer fraction 301/1000 is needed to avoid suggeating to the compiler that it should do a floating point calculation (which silently fails!) so the following formula is used instead: int const sig_digits10 = 2 + std::numeric_limits<FPType>::digits * 301/1000; // log10(2.) This gives the same result without using the ceil function which might not be computed at compile time. So in lexical_cast, substitute for example the above fragment with: if(std::numeric_limits<Target>::is_specialized) { // Show all significant decimal digits, 2 or 3 more than digits10. stream.precision(2 + std::numeric_limits<Target>::digits * 301/1000); } // & similarly for Source A suggested revision and test attached, for example showing float & double now have extra decimal digits. Boost release 30 outputs: 1.414214 1.414213562373095 Revised version outputs: 1.41421354 1.4142135623730951 And it is thus now possible to convert float & double to a string and back again to give exactly the same as the original float & double (which the current version sometimes does not - a pit for the unwary). Paul Paul A Bristow, Prizet Farmhouse, Kendal, Cumbria, LA8 8AB UK +44 1539 561830 Mobile +44 7714 33 02 04 mailto:[EMAIL PROTECTED]
test_lexical_cast.cpp
Description: Binary data
lexical_cast.hpp
Description: Binary data
testLexical_cast.vcproj
Description: Binary data
_______________________________________________ Unsubscribe & other changes: http://lists.boost.org/mailman/listinfo.cgi/boost