+Ron Minnich <rminn...@google.com> +Paul Isaac's <paul.isa...@linaro.org>

Adding Ron and Paul because I think this interface should be also
benefiting LinuxBoot efforts.

On Tue, 23 Mar 2021 at 11:17, François Ozog via TF-A <
t...@lists.trustedfirmware.org> wrote:

> Hi,
>
> I propose we cover the topic at the next Trusted Substrate
> <https://collaborate.linaro.org/display/TS/Trusted+Substrate+Home>    zoom
> call <https://linaro-org.zoom.us/j/94563644892> on April 8th 4pm CET.
>
> The agenda:
> ABI between non-secure firmware and the rest of firmware (EL3, S-EL1,
> S-EL2, SCP) to adapt hardware description to some runtime conditions.
> runtime conditions here relates to DRAM size and topology detection,
> secure DRAM memory carvings, PSCI and SCMI interface publishing.
>
> For additional background on existing metadata: UEFI Platform
> Initialization Specification Version 1.7
> <https://uefi.org/sites/default/files/resources/PI_Spec_1_7_final_Jan_2019.pdf>
> , 5.5 Resource Descriptor HOB
> Out of the ResourceType we care about is EFI_RESOURCE_SYSTEM_MEMORY.
> This HOB lacks memory NUMA attachment or something that could be related
> to fill SRAT table for ACPI or relevant DT proximity domains.
> HOB is not consistent accros platforms: some platforms (Arm) lists memory
> from the booting NUMA node, other platforms (x86) lists all memory from all
> NUMA nodes. (At least this is the case on the two platforms I tested).
>
> There are two proposals to use memory structures from SPL/BLx up to the
> handover function (as defined in the Device Tree technical report
> <https://docs.google.com/document/d/1CLkhLRaz_zcCq44DLGmPZQFPbYHOC6nzPowaL0XmRk0/edit?usp=sharing>)
> which can be U-boot (BL33 or just U-Boot in case of SPL/U-Boot scheme) or
> EDK2.
> I would propose we also discuss possibility of FF-A interface to actually
> query information or request actions to be done (this is a model actually
> used in some SoCs with proprietary SMC calls).
>
> Requirements (to be validated):
> - ACPI and DT hardware descriptions.
> - agnostic to boot framework (SPL/U-Boot, TF-A/U-Boot, TF-A/EDK2)
>
- agnostic to boot framework (SPL/U-Boot, TF-A/U-Boot, TF-A/EDK2,
TF-A/LinuxBoot)

> - at least allows complete DRAM description and "persistent" usage
> (reserved areas for secure world or other usages)
> - support secure world device assignment
>
> Cheers
>
> FF
>
>
> On Mon, 22 Mar 2021 at 19:56, Simon Glass <s...@chromium.org> wrote:
>
>> Hi,
>>
>> Can I suggest using bloblist for this instead? It is lightweight,
>> easier to parse, doesn't have GUIDs and is already used within U-Boot
>> for passing info between SPL/U-Boot, etc.
>>
>> Docs here:
>> https://github.com/u-boot/u-boot/blob/master/doc/README.bloblist
>> Header file describes the format:
>> https://github.com/u-boot/u-boot/blob/master/include/bloblist.h
>>
>> Full set of unit tests:
>> https://github.com/u-boot/u-boot/blob/master/test/bloblist.c
>>
>> Regards,
>> Simon
>>
>> On Mon, 22 Mar 2021 at 23:58, François Ozog <francois.o...@linaro.org>
>> wrote:
>> >
>> > +Boot Architecture Mailman List <boot-architecture@lists.linaro.org>
>> >
>> > standardization is very much welcomed here and need to accommodate a
>> very
>> > diverse set of situations.
>> > For example, TEE OS may need to pass memory reservations to BL33 or
>> > "capture" a device for the secure world.
>> >
>> > I have observed a number of architectures:
>> > 1) pass information from BLx to BLy in the form of a specific object
>> > 2) BLx called by BLy by a platform specific SMC to get information
>> > 3) BLx called by BLy by a platform specific SMC to perform Device Tree
>> > fixups
>> >
>> > I also imagined a standardized "broadcast" FF-A call so that any
>> firmware
>> > element can either provide information or "do something".
>> >
>> > My understanding of your proposal is about standardizing on
>> architecture 1)
>> > with the HOB format.
>> >
>> > The advantage of the HOB is simplicity but it may be difficult to
>> implement
>> > schemes such as pruning a DT because device assignment in the secure
>> world.
>> >
>> > In any case, it looks feasible to have TF-A and OP-TEE complement the
>> list
>> > of HOBs to pass information downstream (the bootflow).
>> >
>> > It would be good to start with building the comprehensive list of
>> > information that need to be conveyed between firmware elements:
>> >
>> > information.    | authoritative entity | reporting entity | information
>> > exchanged:
>> > dram               | TFA                       | TFA                   |
>> > <format to be detailed, NUMA topology to build the SRAT table or DT
>> > equivalent?>
>> > PSCI               | SCP                      | TFA?                 |
>> > SCMI              | SCP or TEE-OS    | TFA? TEE-OS?|
>> > secure SRAM | TFA.                      | TFA.                  |
>> > secure DRAM | TFA? TEE-OS?    | TFA? TEE-OS? |
>> > other?             |                               |
>> >    |
>> >
>> > Cheers
>> >
>> > FF
>> >
>> >
>> > On Mon, 22 Mar 2021 at 09:34, Harb Abdulhamid OS via TF-A <
>> > t...@lists.trustedfirmware.org> wrote:
>> >
>> > > Hello Folks,
>> > >
>> > >
>> > >
>> > > I'm emailing to start an open discussion about the adoption of a
>> concept
>> > > known as "hand-off blocks" or HOB to become a part of the TF-A
>> Firmware
>> > > Framework Architecture (FFA).  This is something that is a pretty
>> major
>> > > pain point when it comes to the adoption of TF-A in ARM Server SoC’s
>> > > designed to enable a broad range of highly configurable datacenter
>> > > platforms.
>> > >
>> > >
>> > >
>> > >
>> > >
>> > > What is a HOB (Background)?
>> > >
>> > > ---------------------------
>> > >
>> > > UEFI PI spec describes a particular definition for how HOB may be
>> used for
>> > > transitioning between the PEI and DXE boot phases, which is a good
>> > > reference point for this discussion, but not necessarily the exact
>> solution
>> > > appropriate for TF-A.
>> > >
>> > >
>> > >
>> > > A HOB is simply a dynamically generated data structure passed in
>> between
>> > > two boot phases.  This is information that was obtained through
>> discovery
>> > > and needs to be passed forward to the next boot phase *once*, with no
>> API
>> > > needed to call back (e.g. no call back into previous firmware phase is
>> > > needed to fetch this information at run-time - it is simply passed
>> one time
>> > > during boot).
>> > >
>> > >
>> > >
>> > > There may be one or more HOBs passed in between boot phases.  If
>> there are
>> > > more than one HOB that needs to be passed, this can be in a form of a
>> "HOB
>> > > table", which (for example) could be a UUID indexed array of pointers
>> to
>> > > HOB structures, used to locate a HOB of interest (based on UUID).  In
>> such
>> > > cases, instead of passing a single HOB, the boot phases may rely on
>> passing
>> > > the pointer to the HOB table.
>> > >
>> > >
>> > >
>> > > This has been extremely useful concept to employ on highly
>> configurable
>> > > systems that must rely on flexible discovery mechanisms to initialize
>> and
>> > > boot the system.  This is especially helpful when you have multiple
>> > >
>> > >
>> > >
>> > >
>> > >
>> > > Why do we need HOBs in TF-A?:
>> > >
>> > > -----------------------------
>> > >
>> > > It is desirable that EL3 firmware (e.g. TF-A) built for ARM Server
>> SoC in
>> > > a way that is SoC specific *but* platform agnostic.  This means that a
>> > > single ARM SoC that a SiP may deliver to customers may provide a
>> single
>> > > TF-A binary (e.g. BL1, BL2, BL31) that could be used to support a
>> broad
>> > > range of platform designs and configurations in order to boot a
>> platform
>> > > specific firmware (e.g. BL33 and possibly even BL32 code).  In order
>> to
>> > > achieve this, the platform configuration must be *discovered* instead
>> of
>> > > statically compiled as it is today in TF-A via device tree based
>> > > enumeration.  The mechanisms of discovery may differ broadly
>> depending on
>> > > the relevant industry standard, or in some cases may have rely on SiP
>> > > specific discovery flows.
>> > >
>> > >
>> > >
>> > > For example:  On server systems that support a broad range DIMM memory
>> > > population/topologies, all the necessary information required to boot
>> is
>> > > fully discovered via standard JEDEC Serial Presence Detect (SPD) over
>> an
>> > > I2C bus.  Leveraging the SPD bus, may platform variants could be
>> supported
>> > > with a single TF-A binary.  Not only is this information required to
>> > > initialize memory in early boot phases (e.g. BL2), the subsequent boot
>> > > phases will also need this SPD info to construct a system physical
>> address
>> > > map and properly initialize the MMU based on the memory present, and
>> where
>> > > the memory may be present.  Subsequent boot phases (e.g. BL33 / UEFI)
>> may
>> > > need to generate standard firmware tables to the operating systems,
>> such as
>> > > SMBIOS tables describing DIMM topology and various ACPI tables (e.g.
>> SLIT,
>> > > SRAT, even NFIT if NVDIMM's are present).
>> > >
>> > >
>> > >
>> > > In short, it all starts with a standardized or vendor specific
>> discovery
>> > > flow in an early boot stage (e.g. BL1/BL2), followed by the passing of
>> > > information to the next boot stages (e.g. BL31/BL32/BL33).
>> > >
>> > >
>> > >
>> > > Today, every HOB may be a vendor specific structure, but in the future
>> > > there may be benefit of defining standard HOBs.  This may be useful
>> for
>> > > memory discovery, passing the system physical address map, enabling
>> TPM
>> > > measured boot, and potentially many other common HOB use-cases.
>> > >
>> > >
>> > >
>> > > It would be extremely beneficial to the datacenter market segment if
>> the
>> > > TF-A community would adopt this concept of information passing
>> between all
>> > > boot phases as opposed to rely solely on device tree enumeration.
>> This is
>> > > not intended to replace device tree, rather intended as an
>> alternative way
>> > > to describe the info that must be discovered and dynamically
>> generated.
>> > >
>> > >
>> > >
>> > >
>> > >
>> > > Conclusion:
>> > >
>> > > -----------
>> > >
>> > > We are proposing that the TF-A community begin pursuing the adoption
>> of
>> > > HOBs as a mechanism used for information exchange between each boot
>> stage
>> > > (e.g. BL1->BL2, BL2->BL31, BL31->BL32, and BL31->BL33)?  Longer term
>> we
>> > > want to explore standardizing some HOB structures for the BL33 phase
>> (e.g.
>> > > UEFI HOB structures), but initially would like to agree on this being
>> a
>> > > useful mechanism used to pass information between each boot stage.
>> > >
>> > >
>> > >
>> > > Thanks,
>> > >
>> > > --Harb
>> > >
>> > >
>> > >
>> > >
>> > >
>> > >
>> > > --
>> > > TF-A mailing list
>> > > t...@lists.trustedfirmware.org
>> > > https://lists.trustedfirmware.org/mailman/listinfo/tf-a
>> > >
>> >
>> >
>> > --
>> > François-Frédéric Ozog | *Director Linaro Edge & Fog Computing Group*
>> > T: +33.67221.6485
>> > francois.o...@linaro.org | Skype: ffozog
>> > _______________________________________________
>> > boot-architecture mailing list
>> > boot-architecture@lists.linaro.org
>> > https://lists.linaro.org/mailman/listinfo/boot-architecture
>>
>
>
> --
> François-Frédéric Ozog | *Director Linaro Edge & Fog Computing Group*
> T: +33.67221.6485
> francois.o...@linaro.org | Skype: ffozog
>
> --
> TF-A mailing list
> t...@lists.trustedfirmware.org
> https://lists.trustedfirmware.org/mailman/listinfo/tf-a
>


-- 
François-Frédéric Ozog | *Director Linaro Edge & Fog Computing Group*
T: +33.67221.6485
francois.o...@linaro.org | Skype: ffozog
_______________________________________________
boot-architecture mailing list
boot-architecture@lists.linaro.org
https://lists.linaro.org/mailman/listinfo/boot-architecture

Reply via email to