Adding other cases found 3⋆39 4052555153018976267 1÷3⋆39 1÷4052555153018976267 3⋆40 1.215766546E19 1÷3⋆40 8.22526334E¯20
Another example which does not have a large denumerator (1÷3)×1÷3 1÷9 (1÷1)×1÷3 0.3333333333 1×1÷3 0.3333333333 2×1÷3 0.6666666667 3×1÷3 1 5×1÷3 1.666666667 6×1÷3 2 1×1÷2 0.5 2×1÷2 1 Regards, Ala'a On Mon, Aug 14, 2017 at 11:12 PM, Ala'a Mohammad <amal...@gmail.com> wrote: > Hi, > > I was playing with the sum of the series 1/3, 1/9, 1/27 ..etc > (1÷3⋆⍳x), and found that If I'm using the rationals experimental > feature (⎕ps ← 1 0), then it the following were found: > > 1) > > 1÷3⋆⍳5 > 1÷3 1÷9 1÷27 1÷81 1÷243 > > +/1÷3⋆⍳39 > 2026277576509488133÷4052555153018976267 > > +/1÷3⋆⍳40 > 0.5 > > Shouldn't the above be 1÷2? > > 2) creating a table for the sums of the above series until 39 > > n,⍪{+/1÷3⋆⍳⍵}¨n←⍳39 > 1 1÷3 > 2 4÷9 > 3 13÷27 > 4 40÷81 > 5 121÷243 > 6 364÷729 > 7 1093÷2187 > 8 3280÷6561 > 9 9841÷19683 > 10 29524÷59049 > 11 88573÷177147 > 12 265720÷531441 > 13 797161÷1594323 > 14 2391484÷4782969 > 15 7174453÷14348907 > 16 21523360÷43046721 > 17 64570081÷129140163 > 18 193710244÷387420489 > 19 581130733÷1162261467 > 20 1743392200÷3486784401 > 21 5230176601÷10460353203 > 22 15690529804÷31381059609 > 23 47071589413÷94143178827 > 24 141214768240÷282429536481 > 25 423644304721÷847288609443 > 26 1270932914164÷2541865828329 > 27 3812798742493÷7625597484987 > 28 11438396227480÷22876792454961 > 29 34315188682441÷68630377364883 > 30 102945566047324÷205891132094649 > 31 308836698141973÷617673396283947 > 32 926510094425920÷1853020188851841 > 33 2779530283277761÷5559060566555523 > 34 8338590849833284÷16677181699666569 > 35 25015772549499853÷50031545098999707 > 36 75047317648499560÷150094635296999121 > 37 225141952945498681÷450283905890997363 > 38 675425858836496044÷1350851717672992089 > 39 2026277576509488133÷4052555153018976267 > > Is fine, but after 39 (when we starting getting 0.5, the numerators of > the above cases in the table have 'float' numerators, and the last 0.5 > at the end of the table is float and written using the E notation. > > n,⍪{+/1÷3⋆⍳⍵}¨n←⍳40 > 1 1.0÷3 > 2 4.0÷9 > 3 13.0÷27 > 4 40.0÷81 > 5 121.0÷243 > 6 364.0÷729 > 7 1093.0÷2187 > 8 3280.0÷6561 > 9 9841.0÷19683 > 10 29524.0÷59049 > 11 88573.0÷177147 > 12 265720.0÷531441 > 13 797161.0÷1594323 > 14 2391484.0÷4782969 > 15 7174453.0÷14348907 > 16 21523360.0÷43046721 > 17 64570081.0÷129140163 > 18 193710244.0÷387420489 > 19 581130733.0÷1162261467 > 20 1743392200.0÷3486784401 > 21 5230176601.0÷10460353203 > 22 15690529804.0÷31381059609 > 23 47071589413.0÷94143178827 > 24 141214768240.0÷282429536481 > 25 423644304721.0÷847288609443 > 26 1270932914164.0÷2541865828329 > 27 3812798742493.0÷7625597484987 > 28 11438396227480.0÷22876792454961 > 29 34315188682441.0÷68630377364883 > 30 102945566047324.0÷205891132094649 > 31 308836698141973.0÷617673396283947 > 32 926510094425920.0÷1853020188851841 > 33 2779530283277761.0÷5559060566555523 > 34 8338590849833284.0÷16677181699666569 > 35 25015772549499853.0÷50031545098999707 > 36 75047317648499560.0÷150094635296999121 > 37 225141952945498681.0÷450283905890997363 > 38 675425858836496044.0÷1350851717672992089 > 39 2026277576509488133.0÷4052555153018976267 > 40 0.5E0 > > I tried to replicate it using another simpler example below: > > ⎕←x←0.5, 1÷1 2 3 > 0.5 1 1÷2 1÷3 > > x,x > 0.5 1 1÷2 1÷3 0.5 1 1÷2 1÷3 > > x,[.5]x > 0.5 1 1÷2 1÷3 > 0.5 1 1÷2 1÷3 > > x,⍪x > 0.5E0 0.5E0 > 1.0E0 1.0E0 > 1.0÷2 1.0÷2 > 1.0÷3 1.0÷3 > > Notice that numerators are floats in the last example. > > Hope this helps. > > Regards, > > Ala'a