Dear Andrew,

the attached MILP model exits with:

*  5400:   objval =   6.264244529e+00   infeas =   0.000000000e+00 (0)
*  5450:   objval =   5.968440326e+00   infeas =   0.000000000e+00 (0)
OPTIMAL SOLUTION FOUND
Integer optimization begins...
+  5450: mip =     not found yet >=              -inf        (1; 0)
+  5481: >>>>>   6.036226238e+00 >=   5.968440326e+00   1.1% (32; 0)
GLPK internal error: x <= ub; file glpios03.c, line 265
Abort

Maybe it is a scaling problem, but just wanted to let you know in case it has triggered a bug. I have a very similar model which runs without any problems.

With best regards

Oscar Gustafsson
data;
param inputbits := 12;
param partitionbits := 4;
param part1bits := 4;
end;
# Piecewise linear approximation
# Oscar Gustafsson, [EMAIL PROTECTED]

param inputbits, integer, > 0;
param partitionbits, integer, > 0;
param part1bits, integer;

param integerbitsoffset := 16;
param integerbitsslope := 16;

set Y := {0..(2^partitionbits-1)};
set Z := {0..(2^(inputbits-partitionbits)-1)};
param X{y in Y, z in Z} := 2^(inputbits-partitionbits)*y + z;

param fracweight := 2^(inputbits-partitionbits);

param pi := 3.14159265;

param f{y in Y, z in Z} := sin(X[y,z]/2^inputbits*pi/2);

var p{y in Y}, integer;
var q{y in Y}, integer;

var error>=0;

minimize e: error;

s.t. postive{y in Y, z in Z}: p[y]/(2^integerbitsoffset) + 
z/fracweight*q[y]/(2^integerbitsslope) - f[y,z] <= error;

s.t. negative{y in Y, z in Z}: -(p[y]/(2^integerbitsoffset) + 
z/fracweight*q[y]/(2^integerbitsslope) - f[y,z]) <= error;

solve;
display p;
display q;

end;
_______________________________________________
Bug-glpk mailing list
[email protected]
http://lists.gnu.org/mailman/listinfo/bug-glpk

Reply via email to