Hi,
I have noticed that GNUbg doesn't come with a cubeless MET so I decided to
calculate my own. My method is explained inside the file. If you like it, I'd
be glad to see it included in the next version.
Keep up the good work,
Tilemachos Zoidis
<?xml version = "1.0"?>
<!DOCTYPE met PUBLIC "-//GNU Backgammon//DTD Match Equity Tables//EN"
"met.dtd">
<!--
2023 Tilemachos Zoidis
Table uses Kazaross XG2 odd post Crawford equities for 1-away scores.
A gammon rate of 27.62% and a backgammon rate of 1.22% are assumed,
based on rollouts by Tom Keith (bkgm.com/openings/rollouts.html),
to calculate the remaining entries.
-->
<met>
<info>
<name>Cubeless 13 point MET</name>
<description>Generated by Tilemachos Zoidis using a combination of math and rollouts</description>
<length>13</length>
</info>
<pre-crawford-table type="explicit">
<row>
<me>0.5000</me>
<me>0.6774</me>
<me>0.8099</me>
<me>0.8844</me>
<me>0.9305</me>
<me>0.9580</me>
<me>0.9747</me>
<me>0.9847</me>
<me>0.9908</me>
<me>0.9945</me>
<me>0.9967</me>
<me>0.9980</me>
<me>0.9988</me>
</row>
<row>
<me>0.3226</me>
<me>0.5000</me>
<me>0.6547</me>
<me>0.7631</me>
<me>0.8405</me>
<me>0.8937</me>
<me>0.9298</me>
<me>0.9541</me>
<me>0.9701</me>
<me>0.9807</me>
<me>0.9876</me>
<me>0.9920</me>
<me>0.9949</me>
</row>
<row>
<me>0.1901</me>
<me>0.3453</me>
<me>0.5000</me>
<me>0.6267</me>
<me>0.7280</me>
<me>0.8052</me>
<me>0.8626</me>
<me>0.9042</me>
<me>0.9340</me>
<me>0.9549</me>
<me>0.9694</me>
<me>0.9794</me>
<me>0.9862</me>
</row>
<row>
<me>0.1156</me>
<me>0.2369</me>
<me>0.3733</me>
<me>0.5000</me>
<me>0.6118</me>
<me>0.7049</me>
<me>0.7797</me>
<me>0.8382</me>
<me>0.8827</me>
<me>0.9159</me>
<me>0.9404</me>
<me>0.9581</me>
<me>0.9708</me>
</row>
<row>
<me>0.0695</me>
<me>0.1595</me>
<me>0.2720</me>
<me>0.3882</me>
<me>0.5000</me>
<me>0.6007</me>
<me>0.6875</me>
<me>0.7596</me>
<me>0.8180</me>
<me>0.8640</me>
<me>0.8996</me>
<me>0.9267</me>
<me>0.9470</me>
</row>
<row>
<me>0.0420</me>
<me>0.1063</me>
<me>0.1948</me>
<me>0.2951</me>
<me>0.3993</me>
<me>0.5000</me>
<me>0.5924</me>
<me>0.6739</me>
<me>0.7434</me>
<me>0.8010</me>
<me>0.8477</me>
<me>0.8849</me>
<me>0.9139</me>
</row>
<row>
<me>0.0253</me>
<me>0.0702</me>
<me>0.1374</me>
<me>0.2203</me>
<me>0.3125</me>
<me>0.4076</me>
<me>0.5000</me>
<me>0.5859</me>
<me>0.6629</me>
<me>0.7298</me>
<me>0.7865</me>
<me>0.8334</me>
<me>0.8715</me>
</row>
<row>
<me>0.0153</me>
<me>0.0459</me>
<me>0.0958</me>
<me>0.1618</me>
<me>0.2404</me>
<me>0.3261</me>
<me>0.4141</me>
<me>0.5000</me>
<me>0.5806</me>
<me>0.6538</me>
<me>0.7183</me>
<me>0.7739</me>
<me>0.8207</me>
</row>
<row>
<me>0.0092</me>
<me>0.0299</me>
<me>0.0660</me>
<me>0.1173</me>
<me>0.1820</me>
<me>0.2566</me>
<me>0.3371</me>
<me>0.4194</me>
<me>0.5000</me>
<me>0.5762</me>
<me>0.6460</me>
<me>0.7084</me>
<me>0.7628</me>
</row>
<row>
<me>0.0055</me>
<me>0.0193</me>
<me>0.0451</me>
<me>0.0841</me>
<me>0.1360</me>
<me>0.1990</me>
<me>0.2702</me>
<me>0.3462</me>
<me>0.4238</me>
<me>0.5000</me>
<me>0.5724</me>
<me>0.6393</me>
<me>0.6997</me>
</row>
<row>
<me>0.0033</me>
<me>0.0124</me>
<me>0.0306</me>
<me>0.0596</me>
<me>0.1004</me>
<me>0.1523</me>
<me>0.2135</me>
<me>0.2817</me>
<me>0.3540</me>
<me>0.4276</me>
<me>0.5000</me>
<me>0.5692</me>
<me>0.6335</me>
</row>
<row>
<me>0.0020</me>
<me>0.0080</me>
<me>0.0206</me>
<me>0.0419</me>
<me>0.0733</me>
<me>0.1151</me>
<me>0.1666</me>
<me>0.2261</me>
<me>0.2916</me>
<me>0.3607</me>
<me>0.4308</me>
<me>0.5000</me>
<me>0.5663</me>
</row>
<row>
<me>0.0012</me>
<me>0.0051</me>
<me>0.0138</me>
<me>0.0292</me>
<me>0.0530</me>
<me>0.0861</me>
<me>0.1285</me>
<me>0.1793</me>
<me>0.2372</me>
<me>0.3003</me>
<me>0.3665</me>
<me>0.4337</me>
<me>0.5000</me>
</row>
</pre-crawford-table>
<post-crawford-table type="explicit" player="both">
<row>
<me>0.5000</me>
<me>0.3226</me>
<me>0.1901</me>
<me>0.1156</me>
<me>0.0695</me>
<me>0.0420</me>
<me>0.0253</me>
<me>0.0153</me>
<me>0.0092</me>
<me>0.0055</me>
<me>0.0033</me>
<me>0.0020</me>
</row>
</post-crawford-table>
</met>