Hi Brian, * Brian Gough wrote on Mon, Jul 26, 2010 at 07:27:16PM CEST: > At Mon, 26 Jul 2010 16:05:09 +0200, Ralf Wildenhues wrote: > > here's the first set of typos in the manual. If there is some you > > prefer to not have fixed, ping me and I'll redo the patch. > > Thanks Ralf, that's amazing - I will apply it!
Cool, thanks. Here's the second part, not all that much left. Cheers, Ralf 2010-07-28 Ralf Wildenhues <[email protected]> * doc/multimin.texi, doc/rng.texi, doc/siman.texi, doc/specfunc-gamma.texi, doc/statistics.texi: Fix typos. * specfunc/gsl_sf_gamma.h: Fix typos in comments. === modified file 'doc/multimin.texi' --- doc/multimin.texi 2010-04-07 21:38:42 +0000 +++ doc/multimin.texi 2010-07-28 19:51:45 +0000 @@ -271,7 +271,7 @@ If the iteration encounters an unexpected problem then an error code will be returned. The error code @code{GSL_ENOPROG} signifies that the minimizer is unable to improve on its current estimate, either due -to numerical difficulty or because a genuine local mimimum has been +to numerical difficulty or because a genuine local minimum has been reached. @end deftypefun === modified file 'doc/rng.texi' --- doc/rng.texi 2010-02-14 10:43:23 +0000 +++ doc/rng.texi 2010-07-28 19:38:10 +0000 @@ -200,7 +200,7 @@ In particular, this function is not intended for generating the full range of unsigned integer values @c{$[0,2^{32}-1]$} @math{[0,2^32-1]}. Instead -choose a generator with the maximal integer range and zero mimimum +choose a generator with the maximal integer range and zero minimum value, such as @code{gsl_rng_ranlxd1}, @code{gsl_rng_mt19937} or @code{gsl_rng_taus}, and sample it directly using @code{gsl_rng_get}. The range of each generator can be found using @@ -918,7 +918,7 @@ prevent the seed taking an even value. The upper 16 bits of @math{x_1} are set to 0. A consequence of this procedure is that the pairs of seeds -2 and 3, 4 and 5, etc produce the same sequences. +2 and 3, 4 and 5, etc.@: produce the same sequences. The generator compatible with the CRAY MATHLIB routine RANF. It produces double precision floating point numbers which should be === modified file 'doc/siman.texi' --- doc/siman.texi 2010-02-14 10:43:23 +0000 +++ doc/siman.texi 2010-07-28 19:38:10 +0000 @@ -220,7 +220,7 @@ @node Trivial example @subsection Trivial example -The first example, in one dimensional cartesian space, sets up an energy +The first example, in one dimensional Cartesian space, sets up an energy function which is a damped sine wave; this has many local minima, but only one global minimum, somewhere between 1.0 and 1.5. The initial guess given is 15.5, which is several local minima away from the global === modified file 'doc/specfunc-gamma.texi' --- doc/specfunc-gamma.texi 2009-07-16 09:10:38 +0000 +++ doc/specfunc-gamma.texi 2010-07-28 19:44:06 +0000 @@ -132,7 +132,7 @@ The maximum value of @math{n} such that @math{n!} is not considered an overflow is given by the macro @code{GSL_SF_FACT_NMAX} and is 170. -...@comment exceptions: GSL_EDOM, GSL_OVRFLW +...@comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_doublefact (unsigned int @var{n}) @@ -142,7 +142,7 @@ The maximum value of @math{n} such that @math{n!!} is not considered an overflow is given by the macro @code{GSL_SF_DOUBLEFACT_NMAX} and is 297. -...@comment exceptions: GSL_EDOM, GSL_OVRFLW +...@comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_lnfact (unsigned int @var{n}) @@ -197,7 +197,7 @@ @deftypefun double gsl_sf_poch (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_poch_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex Pochhammer symbol -...@cindex Apell symbol, see Pochammer symbol +...@cindex Apell symbol, see Pochhammer symbol These routines compute the Pochhammer symbol @math{(a)_x = \Gamma(a + x)/\Gamma(a)}. The Pochhammer symbol is also known as the Apell symbol and sometimes written as @math{(a,x)}. When @math{a} and @math{a+x} === modified file 'doc/statistics.texi' --- doc/statistics.texi 2010-02-14 10:43:23 +0000 +++ doc/statistics.texi 2010-07-28 19:47:47 +0000 @@ -89,7 +89,7 @@ where @math{x_i} are the elements of the dataset @var{data}. Note that the normalization factor of @math{1/(N-1)} results from the derivation of @math{\Hat\sigma^2} as an unbiased estimator of the population -variance @math{\sigma^2}. For samples drawn from a gaussian distribution +variance @math{\sigma^2}. For samples drawn from a Gaussian distribution the variance of @math{\Hat\sigma^2} itself is @math{2 \sigma^4 / N}. This function computes the mean via a call to @code{gsl_stats_mean}. If @@ -300,7 +300,7 @@ @end ifinfo @noindent The kurtosis measures how sharply peaked a distribution is, relative to -its width. The kurtosis is normalized to zero for a gaussian +its width. The kurtosis is normalized to zero for a Gaussian distribution. @end deftypefun === modified file 'specfunc/gsl_sf_gamma.h' --- specfunc/gsl_sf_gamma.h 2007-07-02 18:34:24 +0000 +++ specfunc/gsl_sf_gamma.h 2010-07-28 19:42:03 +0000 @@ -114,7 +114,7 @@ /* n! * - * exceptions: GSL_EDOM, GSL_OVRFLW + * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_fact_e(const unsigned int n, gsl_sf_result * result); double gsl_sf_fact(const unsigned int n); @@ -122,7 +122,7 @@ /* n!! = n(n-2)(n-4) ... * - * exceptions: GSL_EDOM, GSL_OVRFLW + * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_doublefact_e(const unsigned int n, gsl_sf_result * result); double gsl_sf_doublefact(const unsigned int n); _______________________________________________ Bug-gsl mailing list [email protected] http://lists.gnu.org/mailman/listinfo/bug-gsl
