...
 for(tt=2;tt<=tot_day;tt++) {
    h[tt]=beta_0 + beta_1*h[tt-1] + beta_2*h[tt-1] ...
        for (i=0; i<200 ; i++) { 
             double temp=l(y[tt]/h[tt],y[tt-1]) ;
             temp +=exp(-lambda+i*log(lambda)-log_i+log(pgauss...
                }
                 }
 lli += log(l(y[tt]/h[tt], y[tt-1]));


 h[tt] is my variance 
 temp is my normal density function  - the sum is after i
 l is conditional probability density  function
 lli is log likelihood function   - the sum is after tt ( y[tt]) 



Reply via email to