
CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 1

iBOB ADC Tutorial
CASPER Reference Design

Author: Griffin Foster
March 24, 2009 (v1.0)

Hardware Platforms Used: iBOB, iADC
FPGA Clock Rate: 100 MHz
Sampling Rate: 400 MHz
Software Environment: TinySH

This tutorial walks through a design which uses an iBOB and iADC board to record time domain
data into a BRAM and calculate the summed power of the samples. The first section of this tu-
torial walks through the Simulink design. We then look at simulating the design and loading it
onto a board to test. In the last section we go through using lightweight IP to interface with the
iBOB.

Start a New Design

Start using Matlab, we will be using MLib Devel 7.1 for this design. Run Simulink by typing si-
mulink in the Matlab command prompt. To create a new design, select File → New → Model
from the Simulink Library Browser. Save as “adc_tutorial.mdl”

We will be using a number of blocksets in this design, you may want to load BEE_XPS System,
CASPER DPS, and Xilinx. Since we will be using Xilinx blocks the first block to place is the
System Generator block which is in the Xilinx blockset from Basics Elements.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 2

The System Generator block does not need any modifications, it just needs to be in the design.
Next, insert an XSG core config block from the BEE_XPS System Blockset library. This block is
required by the bee_xps toolflow, and is used to define the compilation parameters for the design.
The settings in this block are used to automatically define the settings of the System Generator block
during system generation.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 3

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 4

Double-click on the XSG Core Config block to set the parameters:
• Set Hardware Platform to iBOB
• Uncheck Include Linux add-on board support
• Set User IP Clock source to sys_clk
• Set User IP Clock Rate to 100MHz
• Set Sample Period to 1
• Select XST as the Synthesis Tool
• Click OK

When the design is complete we will be using the lightweight IP interface to interact with the board.
To include this in the design add the ibob_lwip block from the BEE_XPS System Blockset.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 5

ADC Block
Now that we have the basic blocks down we are ready to start our ADC interface design. This iBOB
design uses the adc block from the BEE_XPS System Blockset. We will only be using one ADC,
thought the iBOB can physically interact with two(if you have a design that uses two ADCs, add two
adc blocks to your design).

There are two modes to the ADC, we can use the ADC in interleave mode to increase the sample
speed by sacrificing one of the inputs. Since we will be using a low clock speed for this design
then we do not need to use it’s interleave mode. Double-click on the ADC block and uncheck the
ADC Interleave Mode option.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 6

Now the ADC block will have 4 inputs: sim_i, sim_q, sim_sync, sim_data_valid.

Quick Note about Simulink: a block will have inputs on the left and outputs on the right. The
outputs do not need to be hooked up to anything but the inputs of a block do.

For the inputs to the ADC we will hook up some simulated data blocks.

Another Quick Note about Simulink: In the designs we create we take blocks from various
block sets. But not all the blocks are compiled into the final FPGA bitstream. Many of the blocks
are used to simulate the final design. Such blocks as Band-limited White Noise, Simulink Con-
stant, and Sine Wave are useful in simulating the output of some design logic but will not be
part of the final design.

To simulate our design properly we will use a Sine Wave in the Simulink Blockset from
Sources. Drag the block to the left of the ADC block and hook it up to both sim_i and sim_q.
Simulink Tip: to create multiple paths from one wire hold Control and drag from a spot on the
wire to create a new wire. Also hook up a Pulse Generator in the Simulink Blockset from
Sources to sim_sync and a Simulink Constant in the Simulink Blockset from Commonly Used
Blocks to sim_data_valid.

The ADC has a number of outputs, many of which are useful for reporting system diagnostics.
For now we will concentrate on just the ADC data output which is four sample from the Q and I
inputs for each clock (there are four samples because the ADC card runs at 4x the clock of the
iBOB). Each one of these samples is an 8 bit number, more precisely it is an 8.7 binary number.
That is to say that there are 8 bits and the binary point is between the 7th and 8th bit, so the range
of output is -1 to 1-(1/127).

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 7

We will only use the I samples for this design, the rest of the outputs will not be used. Attach a
Goto block in the Simulink Blockset from Signal Routing to each of the I outputs. Tip: It is
easy to duplicate blocks by dropping one block into the design, then Control-click the block and
drag, a duplicate block will appear. The Goto and From blocks are useful fro keeping a clean
design but are not necessary. We will use them because there is a summed power section and
snap block section of this design which use the same inputs but are separate subsystems.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 8

Each Goto block can be named by double-clicking the block and renaming the tag, for this de-
sign we used adc0_i0…adc0_i3 for tag names. To use a From block double-click and rename the
tag to the name of the Goto tag you want to use. The ADC subsystem of our design is complete,
we now move onto a sync generator.

Sync Generator

It is often useful to have a sync pulse which keep all the parts of a design well…in sync. A sync
pulse is repeatedly generated after a specific number of clock cycles, the sync pulse propagates
through the design and will trigger various blocks along the way. In our case we will use it to
sum 8192 squared ADC samples(summed power) and write those samples to a BRAM to be read
off to a computer later. The sync pulse design is rather easy and only uses a few blocks.

The first block is a counter which will run from 0 to 2047 and then start back at 0 again. The
choice of 2048 is based on the number of samples we will write to BRAM and sum up. The
Counter block is in the Xilinx blockset from Basic Elements.

Once you drop the block into the design double-click on the Counter block to set the parameters:
• Set Counter Type to Free Running
• Set Number of Bits to 11

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 9

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 10

The counter will increment by one on every clock cycle, we would like to use this fact to send out a
single pulse every 2048 clock cycles. There are probably a few ways to do this but the way that is
pretty easy so to select the highest bit, the so called MSB(most significant bit), and when it changes
from 0 to 1 then to send out a pulse. In every 2048 clock cycles the MSB will only go from 0 to 1
once, when the counter is going from 1023 to 1024. We can send a sync pulse out when we detect
this in the counter by using a Slice block and Posedge block.
Place a Slice block from Basic Elements in Xilinx into the design and connect the input of the Slice
to the output of the Counter.

The Slice block outputs an extracted range of bits from its input, in our case we only want the
MSB. The output of the default Slice block will do exactly what we want.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 11

The Posedge block from Misc in CASPER DSP blockset will output True when the input singal
is True and the previous signal was False. Drag this block into the design and connect it’s input
to the output of the Slice block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 12

Finally add a Goto block from Signal Routing in the Simulink blockset to the output of the Po-
sedge block. Name the tag something useful like ‘sync_gen’. Now that we have a sync generator
and the outputs of the ADC we can build a subsystem that accumulates the summed power of the
analog inputs over a number of clocks and writes that value to a software register which we can
read over a network interface.

Summed Power

The values coming out of the ADC represent the voltage levels of the analog inputs, these values
are related to the true voltages by a scale factor. Thus the power of the input signals can be com-
puted by squaring these voltage levels and the true power of a signal is related to this power by
another scale factor. For now we will not worry about this scale factor, and look at computing
the summed power of the signal. First we use the second part of our Goto/From signal routing
layout to place four From blocks each named to the corresponding Goto block from the ADC.
The From block is from Signal Routing in the Simulink blockset.

The next step is to square these values, the simplest way to do this is to use the Mult block in
Math from the Xilinx blockset. From each From block attach the output to both inputs of the
Mult block, use the Control-click method to create a extra wire.

It is important to consider the size of the data as it propagates through a design. The samples
from the ADC are of size 8.7 but when data has an arithmetic operation performed on it, such as
add or multiply, the output is not always the same size. In the case of a multiplying two 8.7 num-
bers the output will fit in a 16.14 number. Simulink can usually account for this growth, but
sometimes it is best to set a fixed size.

For the four Mult blocks we placed we can set this output size by double-clicking on each block:
• Set Precision to User-Definded, the parameters will then expand
• Set Number of Bits to 16
• Set Binary Point to 14

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 13

• For Output Type select Unsigned

Since we will be computing the sum of the powers we will need to add together the samples. Rather
then using four duplicate paths to add up the four ADC samples on every clock we can just add the
four powers together after they are squared and then we will only need one path. To add the four
samples together we could easily construct an Adder Tree which will add any number of inputs using
a series of 2 input Add blocks. But since this is a common operation there is a prebuilt adder tree
which will scale based on the number of inputs a design requires. We want to place an Adder_tree
block from Misc in the CASPER DSP blockset.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 14

Double-click on the Adder_tree block and set Number of Inputs to 4, then click OK.

Connect the outputs of the four Mult blocks to the inputs of the Adder_tree block. The Adder_tree
block also takes as input a sync, which is fine since we just created a sync generator for just this use.
Add a From block which is in Signal Routing from the Simulink blockset, double-click on the block
and set the tag name to the sync generator tag name. The connect the block to the sync input of the
Adder_tree.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 15

Now that we have summed the four samples we would like to add up this output 2048 times, and
output the result to a software register. Once the value is output to a register then the summed power
value should be reset to zero to begin summing the next 2048 samples. Lets start with an interme-
diate goal of summing 2048 samples then resetting the sum to zero. Here is the block layout, we’ll
step through each block.

The output from dout on the Adder_tree block first goes through a Convert block which outputs the
input data in a new bit size. The rationale for this is that we had a 16.14 number coming into the ad-
der tree, then by adding 4 samples together the bit size has grown to 18.14 (when adding the preci-
sion past the binary point does not increase). Then we will add 2048 18.14 number together which
will need an 29.14 number to hold the final total. We will actually set the number of bits to 32.14
since we will eventually be writing this value to a 32 bit register anyways. Lets place a Convert
block from Basic Elements in the Xilinx blockset and conncet the block’s input to the dout on the
Adder_tree block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 16

Once you drop the block into the design double-click on the Convert block to set the parameters:
• Set Output Type to Unsigned
• Set Number of Bits to 32
• Set Binary Point to 14

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 17

The next block is a AddSub block which we will use to add the output of the Adder_tree to the val-
ues from the previous clock cycles. One of the inputs is the Adder_tree output and the other input is
the essentially the output of itself. This may seem confusing, but it works as a simple accumula-
tor/summer as long as the other blocks are present. If the output of the AddSub block was connected
directly to its input then there would be a logic error, the block would need to know the output of it-
self before it could be computed. What we want to do is add a 1 clock delay to the output before it
reaches the input again. That way the AddSub block uses the it’s output from 1 clock before to com-
pute a new output, thus the block will act as an accumulator. We will worry about the intiail condi-
tion case and resetting after 2048 samples shortly.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 18

For now lets place an AddSub block from Math in the Xilinx blockset. Connect the first input to the
output of the Convert block and double-click on the block.

• Change Precision to User-Defined
• Set Number of Bits to 32
• Set Binary Point to 14

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 19

Then we delay the output of the AddSub block by one clock with a Delay block. Drop the Delay
block which is in Basic Elements in the Xilinx blockset and connect the input of the Delay block to
the output of the AddSub block. The default setting of the Delay block is to delay by 1 clock.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 20

If we hooked up the wire from the Delay block to the second input of the AddSub block we would
have 2 problems. The first is that our accumulator would loop forever and never reset, eventually we
would run out of bits. We need to use the our sync generator to set the second input of the AddSub
block to 0 every 2048 samples, thus resetting our accumulator. The second issue we have is the initial
value of the second input to the AddSub block need to be 0. We can solve both of these problems by

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 21

using a Multiplexer, or Mux. The Mux block has three inputs: sel, d0, and d1. The inputs d0 and d1
can be any stream of data. The output od the Mux block is dependent on the sel input which select
which input to output, it is effectively a switch. We can use the Mux block to send the output of the
AddSub block to it’s own input 2047 times, then on the 2048 time switch to a 0 which resets our ac-
cumulator.
Drop a Mux block from Basic Elements in the Xilinx blockset into the design.

Connect the sync_out on the Adder_tree to the sel input on the Mux block. Connect the output of
the Delay block to the d0 input of the Mux block. To the d1 input of the Mux block we want to add a
constant 0 value. For this we need to use the Xilinx blockset constant and not the Simulink blockset

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 22

constant. As mentioned earlier, many of the blocks in the Simulink blockset are only used for simula-
tion and will not be compiled into a final bitstream. IN this case we want this constant value to be in
in our final design, so we use the Xilinx constant.

Drop a Constant block from Basic Elements in the Xilinx blockset into the design and double-click
on the block:

• Set Constant Value to 0
• Set Number of Bits to 32
• Set Binary Point to 14
• Check Sampled Constant

Connect the output of Constant block to the d1 input of the Mux block. The output of the Mux
block can now be connected to the second input of the AddSub block. We now have a simple accu-
mulator which adds 2048 values, though we don’t have an output…yet.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 23

Now that we have an accumulator we can take it’s output and place the value in a software register.
But, we have to be careful about what we put in that software register. Here is the final design of the
summed power subsystem. We’ll go through the last few blocks dealing with the software register.

In this diagram the yellow block is the software register, we add another 2 blocks before it to make
sure the value is really the 2048 accumulated samples and that value is correctly written to the soft-
ware register.
Lets start with the register block. You’ll notice that the output of our accumulator is a wire branched
after the Delay block before the Mux block. If we wrote this value directly to a software register then
every clock cycle the software register would be updated and would not represent a total of 2048 ac-
cumulated values, it could be any number of accumulations. We would like the software register to
keep one value for 2048 clock cycles then update the register when 2048 new accumulations are
made. To do this we use a Xilinx Register block which will input all the values of the accumulator

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 24

over 2048 cycles, but will only output a value when the sync generator sends a signal to its enable
port. The sync generator is again the key to this design.
Select the Register block from Basic Elements in the Xilinx blockset.

Double-click on the Register block:

• Check the Provide Enable Port option
Once OK is clicked the block will have an en input which is the enable port. The Register will only
output when the enable port is set to 1. Connect the en port to a branched wire from the sync_out port
on the Adder_tree block. Connect a branched wire from the Delay block to the d port on the Regis-
ter block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 25

If you will recall we have a 32.14 binary value being placed into our Register block. But when we
place this value in the software register the output will be a 32.0 number since the software register
won’t know where there is a binary point. To be on the safe side we should fix the output of the Reg-
ister block to 32.0 before it is put in the software register. There is a Reinterpret block which will
do this.
Drop a Reinterpret block from Basic Elements in the Xilinx blockset onto the design, the defaults
of the block will set the binary point to 0. Connect the output of the Register block to the input of the
Reinterpret block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 26

The last block we need is the software register which represents a register which can be read over a
network interface. Drop a Software Register block from the BEE_XPS System blockset onto the
design. The default settings for this block are what we want. Connect the output of the Reinterpret
block to the reg_out input of the Software Register block. The name of this block is important for
when we later interact with the hardware over a network, name the block sum_sq_vlt.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 27

This subsystem is now complete, the last subsystem to design is a time domain data recorder using
snap block.

Time Domain Snap Block
Along with generating a summed power value every 2048 clock cycles it would be useful to write
those 8192 ADC samples which were used in the computation of the summed power to a piece of
memory which can be accessed from another machine. We can do this be writing the values to the
BRAM memory.
First create another set of ADC sample From blocks which are from Signal Routing in the Simu-
link blockset .These are 8.7 values and since we will not be manipulating the values, but just record-
ing them to BRAM they should be changed to 8.0 binary values using the Reinterpret block from
Basic Element in the Xilinx blockset. Place 4 of these blocks into the design and connect each to the
ADC From blocks.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 28

Like the software register we use in the summed power subsystem the BRAM uses 32 bit memory
pieces. We have 8 bit data, a simple option is to reinterpret that 8 bit data as 32 bits, but that would
be a lot of wasted memory. A better method would be to concatenate 4 8 bit values into a 32 bit val-
ue. Then we would only need a BRAM of size 32 by 2048 to store the 8192 values. There is easily
enough a Concatenate block to do this.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 29

Place a Concatenate block from Basic Elements in the Simulink blockset onto the design and
double-click on it.

• Set Number of Inputs to 4

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 30

Connect the outputs of the 4 Reinterpret blocks to the inputs of the Concatenate block.
Now that 4 values are packed in to 32 bit values they can be written to BRAM. The easiest way to
perform this task is to use the Snap block which takes in a 32 bit value and writes it to BRAM.

There are 3 inputs to the Snap block: din, trig, and we. The din input is data input, trig triggers the-
writing of data to the BRAM, and we is the write enable option. For this design we want to write
2048 32-bit values starting every time the sync generator sends a sync pulse. Write enable should be
set to 1 such that it is always on.
Drop a Snap block from Scopes in the CASPER DSP blockset, and double-click on the block.

• Set No. of Samples (2^?) to 11

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 31

After the Concatenate block there in order to make sure we are writing 32.0 data to the BRAM we
should add another Reinterpret block. Connect input of a default Reinterpret block from Basic
Elements in the Xilinx blockset to the output of the Concatenate block. Connect the output of the
Reinterpret block to the din input of the Snap block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 32

For the trig input on the Snap block connect a From block to with the sync_gen tag such that the trig
input is connected to the sync generator.
Place a Constant from Basic Elements in the Xilinx blockset onto the design and double-click on
the block:

• Set Constant Value to 1
• Select Type to be Boolean

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 33

Connect the output of the Constant block to the we input of the Snap block.

Note on the Snap Block: The Snap block is a CASPER block which is made up of simpler blocks
which we can take a look at. Right-click on the block and select “Look Under Mask”.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 34

A new window will appear and show the design of the block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 35

Finally, if all has gone well then we have a completed, but untested design.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 36

A useful option in seeing the number of bits going from different blocks is to turn on the Data Port
Types options which can be done by going to the Format menu – Port/Signal Displays – select Data
Port Types.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 37

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 38

Test Simulations
Before compiling a design and placing the bitstream on a board it is useful to simulate the design and
look at how the output matches with what is expected. Simulations also find logical errors and make
sure blocks will work properly with their inputs. Simulink allows a design to simulated for a number
of clock cycles. It should be noted that the larger and more complex the design the longer Simulink
takes to simulate it. When we simulate a design there are various points along the design that we
would like to see. For this we use the Scope block which is in Sinks in the Simulink blockset.

When a Scope block is first placed into a design there is only one input, this can be changed by
double-clicking on the block. The scope display will appear and clicking on the Parameters button
(second on the upper left) will bring up a new window. Then under the heading General the setting
Number of Axes sets the number of inputs. For this simulation we will use 5 inputs.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 39

The default scope history to remember is only 5000 cycles, we will be looking at more then 5000
cycles. In the Data History tab uncheck the Limit Data Points to Last option.

Now that our Scope block has 5 inputs we need one more block to get meaningful data out onto the
scope display. The values going from block to block have different bit lengths and different mean-
ings. These values should be converted to meaningful integer or float values for the scope. There is a
Gateway Out block which will do this. Places a Gateway Out block from Basic Elements in the
Xilinx blockset onto the design and duplicate the block for each Scope block input and connect the
output of the Gateway Out block to the input of the Scope block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 40

The inputs on the Scope block can be hooked up to any wire in the design, feel free to pick some
wires to look at. You want to pick wires which will have meaningful outputs and help to determine
that the design is simulating properly. Below is an image of the wiring I used to check the design.

The input to the ADC block will determine the output on the scope, at the beginning of the design we
placed a Sine Wave block onto the input of the ADC block. Doulble-click on the Sine Wav block
and make sure the settings are the same as the settings below, then click OK.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 41

The Scope block will display the output of one of the ADC samples, the sync generator, the value of
the 4 summed samples before the accumulator, the value written to the software register, and the val-
ue in the accumulator. Now we want to simulate the design for many clock cycles. Since the design
uses a 2048 accumulator we want at least that many clocks simulated. The first few clock cycles
could have undefined output while the system settles. If we do 10000 clock cycles that should give
the system time to settle and show a few iterations of the accumulator. At the top of the design win-
dow there is a box with a Play button to the left of it. This box sets the number of cycles, put in
10000 and press the Play button.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 42

Once the simulation has begun it will take a little time to finish. The progress of the simulation is
displayed at the bottom of the window.

Once the simulation is complete then we can look at the output by double-clicking on the Scope
block. Enlarge the new window that appears and be sure to click on the Auto Scale button(pair of
Binoculars at the top of the window). The output should look something like the image below.

The top window shows an ADC sample which should be a sine wave, we can zoom in on a portion to
see that it is a sampled sine wave ranging -1 to 1. The next window is the sync generator which is
triggering every 2048 clock cycles. The next window shows the four summed squared samples which
should have a range 0 to 4. The fourth window shows the value at the software register. That value
should be about the same since the input sine wave isn’t changing. The beginning of the window is
stepped because the first accumulation isn’t a full 2048 accumulation, this is why we give the system
time to settle. The last window is the value of the accumulator. For 2048 clocks the value always in-
creases then is reset to 0. The simulation looks good and the results are what we expected.
To zoom into a section of the simulation click-and-drag a box over the section to view.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 43

Now that our simulations look good we are ready to compile the design and test it out on an iBOB.

From here there are a few steps which we can work on the further:
 FFT block/simulation: add an FFT portion to the design, and simulate the design
 BEE_XPS: run BEE_XPS to generate a bit file
 Loading design onto an FPGA: physically load a design onto an iBOB
 Telnet to iBOB: login to the iBOB and look at the software registers and brams

Revision History
Date Revision Changes

March 23, 2009 v1.0 Initial revision.

