IBOB ADC Tutorial

CASPER Reference Design

Author: Griffin Foster
March 24, 2009 (v1.0)

Hardware Platforms Used: iBOB, iIADC
FPGA Clock Rate: 100 MHz

Sampling Rate: 400 MHz

Software Environment: TinySH

This tutorial walks through a design which uses an iBOB and iADC board to record time domain
data into a BRAM and calculate the summed power of the samples. The first section of this tu-
torial walks through the Simulink design. We then look at simulating the design and loading it
onto a board to test. In the last section we go through using lightweight IP to interface with the
iBOB.

Start a New Design

Start using Matlab, we will be using MLib Devel 7.1 for this design. Run Simulink by typing si-
mulink in the Matlab command prompt. To create a new design, select File — New — Model
from the Simulink Library Browser. Save as “adc_tutorial.mdl”

[* simulink Library Browser M=
File Edit Wieww Help

Qper. .. Chrl+ Library
Close

Preferences. .,

Y

w — DummD”ES Commonly Used Blocks — |

----- y Commonly sed Blocks _”usad halo
----- | Continuous -

----- y Discontinuities Continuous
----- # Discrete

..... # Logic and Bit Operations \\ Dizcontinuities
..... %] Lookup Tables —

We will be using a number of blocksets in this design, you may want to load BEE_XPS System,
CASPER DPS, and Xilinx. Since we will be using Xilinx blocks the first block to place is the
System Generator block which is in the Xilinx blockset from Basics Elements.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 1

[Simulink Library Browser =
File Edit Wiew Help

0 & = # oo

System Generator: Interface to the Filing System Generator to generate HOL code for
the subsystern hierarchy inowhich the block resides. The black alzo gives coarse arain
[zubsystern wide] control over capabilities such as ovemiding with doubles. Double click on
the icon to access these features.

EJ zauges Blockset -] v
EJ Gtk aveCapture 5
----- W Image Acquisition Blockset
E_l Model Predictive Control Toolbox a| Addressable Shif
M| Meural Mebwork Blockset Fegiter

----- W Real-Time Windows Target Black Box
EJ Real-Time Workshop
EJ Real-Time Warkshop Embedded Code CE Clack Enable Probe
. @ Report Generator
EJ Signal Processing Blocksat q
EJ SimPowerSystems I

| Cohcat

- T Simulink Extras

- W simulink Response Optimization
----- W stateflow

- N svnplify DSP Blockset cast| Conwert
- N Svstem Identification Toolbox
- W Testbench Blockset ot Counter
- wilircs Blockset

----- # Basic Elemnents
- B Communication
----- #+ Contral Lagic

..... B5] Data Types 1-131 Diown 5 ample
..... 1 osp
..... y Index azh Exprezzion

k=1| Constant

i Delay

.....] Memary dbl fpt| Gateway In
----- y Shared Memory

""" 3 Tools fpt dbl| Gateway Out

..... B wilin: 1P -
. Pal=n g

Feady v

The System Generator block does not need any modifications, it just needs to be in the design.
Next, insert an XSG core config block from the BEE_XPS System Blockset library. This block is
required by the bee_xps toolflow, and is used to define the compilation parameters for the design.
The settings in this block are used to automatically define the settings of the System Generator block
during system generation.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 2

E!adc_tuturial_l:est i3

File Edit

Wiew Simulation Format

Tools Help

DIEEH&| t R[22)r =

2.

Sy stem
Genergtor

[simulink Library Browser

File Edit ‘iew Help

I =] B3

O & & ¢ [omo

X5G core config: The ®5G Core Config block, iz used ta configure the System

Generator design

for the bee_xps toolflow. Settings here are uzed to configure the
wiling Systern Generatar block parameters automatically, and contral toolflaw
zorpt execution. |t needs to be at the top level of all designs being compiled

wiith Hha haa wne baalblon

- B Real-Time warkshop

1]
Ready

| *

- B Real-Time Workshop Embedded Code -

|3 K 1

----- P signal Routing al— -
..... 2] Sinks -
v e | iMCODE
----- | Sources s F
----- % User-Defined Functions o08
- 24 Additional Math & Discrete vap | ibob_twip
..... W/ BEE_xPS System Blockset
= @l CASPER DSP Blocksst PCORE| pcaore
----- 1 Accumulators
..... | Correlator probe probe
..... y Delaws
..... | Downcorverter d
- ¥ FFTs e
----- | Misc =
_____ 2] Mulipliers wian wiami | Shared BERAM
& * PFBs =
----- | Reorder - Shared FIFO
----- P Scopes
- W@l COMA Reference Blockset m software register
- ¥ Communications Blockset o -
----- B8 Control System Toolbox .
. sram
..... B GAYRT Blockset -
- | Gauges Blockset
- B Gtk aveCapture ten_GbE
----- EJ Image Acquisition Blockset
[+ ¥ Model Predictive Control Taolbax v
- B Meural Network Blockset
----- B Real-Time Windows Target — =| mall

3 core canfig

s

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

S]Block Parameters: XSG core config []

—rzg core config [mazk] [link]

The ®5G Caore Config block iz uged o configure the System Generator design
for the bee_xpz toolflow. Settings here are uzed to configure the

Filing Syztern Generator block parameters automatically, and control toolflow
zonpt execution. |t needs to be at the top level of all designs being compiled
with the bee_xpz taolflow.

—Parameters
Hardware P'Iatfu:urml iB0E ;I
[T Include Linus add-on board support
I1zer IP Clock snurcel ays_clk ;I
User IP Clock Rate [MHz)
|10
Sample Peniod
|
Syntheziz Toal | =5T ;I
] Cancel Help | Lpply |

Double-click on the XSG Core Config block to set the parameters: |l SR REE S

« Set Hardware Platform to iBOB File Edit “iew Simulation Format Teo
« Uncheck Include Linux add-on board support O Hd&S| & BR|o
* Set User IP Clock source to sys_clk

* Set User IP Clock Rate to 100MHz v

* Set Sample Period to 1 si EEEE

» Select XST as the Synthesis Tool Gystem | XSG core config
¢ Click OK Generatar

When the design is complete we will be using the lightweight IP interface to interact with the board.
To include this in the design add the ibob_Iwip block from the BEE_XPS System Blockset.

E!adc_tuturial_test i

File Edit Wiew Simulation Format Tools Help

D& & B2 <2 » = oo

IBOB
MESGE Liil P
.

System X5 core config ibob_lwip
Generator

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 4

ADC Block

Now that we have the basic blocks down we are ready to start our ADC interface design. This iBOB
design uses the adc block from the BEE_XPS System Blockset. We will only be using one ADC,
thought the iBOB can physically interact with two(if you have a design that uses two ADCs, add two

adc blocks to your design).

[Simulink Library Browser =]

File Edit W%iew Help

[) & 42 @ ||oot

adc: The ADC block convertz analog inputs to digital outputs, Every clock cycle, the inputs
are gampled and digitized to 8 bit binare paint numbers in the range of [-1, 1] and are then
output by the adc.

- .. %2 Signal Routing B
- 2] Sinks e

----- J Sources
- 23 User-Defined Functions con_adc

. -3 Additional Math & Discrete

E BEE_¥P3 Syskem Blocksek e corn_dac

B W CASPER DSP Blockset | e
.. 2] Accumulators |—E-| R,

=im_in

SiMm_syne

zim_data_walid

all

ol

o2

o3

od

of

ofi

a7
outofrangel
outofrange 1
outafrange
outafranged
syncl
sync
Sync?
SyNGa
data_walid

adc

There are two modes to the ADC, we can use the ADC in interleave mode to increase the sample
speed by sacrificing one of the inputs. Since we will be using a low clock speed for this design
then we do not need to use it’s interleave mode. Double-click on the ADC block and uncheck the

ADC Interleave Mode option.

E! Function Block Parameters: adc E

—adc [mazk] [link]

The ADC block converts analog inputs to digital outputs. Every clock cpcle, the inputs
are zampled and digitized to & bit binary point Aumbers in the range of [-1, 1] and are
thien output by the adc.
—Parameters
ADC board| BOE:adc0 =l
ADC clock rate (MHz)
500
[iADC interleave mode:
Sample period
[
0k Canicel Help Apply

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

Now the ADC block will have 4 inputs: sim_i, sim_q, sim_sync, sim_data_valid.

Quick Note about Simulink: a block will have inputs on the left and outputs on the right. The
outputs do not need to be hooked up to anything but the inputs of a block do.

For the inputs to the ADC we will hook up some simulated data blocks.

Another Quick Note about Simulink: In the designs we create we take blocks from various
block sets. But not all the blocks are compiled into the final FPGA bitstream. Many of the blocks
are used to simulate the final design. Such blocks as Band-limited White Noise, Simulink Con-
stant, and Sine Wave are useful in simulating the output of some design logic but will not be
part of the final design.

To simulate our design properly we will use a Sine Wave in the Simulink Blockset from
Sources. Drag the block to the left of the ADC block and hook it up to both sim_i and sim_g.
Simulink Tip: to create multiple paths from one wire hold Control and drag from a spot on the
wire to create a new wire. Also hook up a Pulse Generator in the Simulink Blockset from
Sources to sim_sync and a Simulink Constant in the Simulink Blockset from Commonly Used
Blocks to sim_data_valid.

il f

I.|'|.| . . il [
I-|_|-| v— =im_i iz b

Sine WM'ave b
q0 |

ql B

zim_q 92 |

g3 B

outofrangeil f

outofrangeil [

-!-OT TOT |sim_syne outofrangeql [
H outofrangeq! B
Fulse syncl p
Generatar syncl p
syncl B

sim_data_valid syned b
Constant data_walid |

ade

The ADC has a number of outputs, many of which are useful for reporting system diagnostics.
For now we will concentrate on just the ADC data output which is four sample from the Q and |
inputs for each clock (there are four samples because the ADC card runs at 4x the clock of the
iBOB). Each one of these samples is an 8 bit number, more precisely it is an 8.7 binary number.
That is to say that there are 8 bits and the binary point is between the 7" and 8" bit, so the range
of output is -1 to 1-(1/127).

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 6

[simulink Library Browser [_ [T =]

File Edit %iew Help
O = 42 ¢ ||gu:uh:|

Goto: Send signals to From blocks that have the specified tag. If tag wizsibility iz 'scoped’,
then a Goto Tag Yisibility block must be uzed to define the vizibility of the tag. The block
icon digplays the selected tag name [local tags are enclosed in brackets, [], and scoped tag
names are enclosed in braces, {1).

= Wgh| Sirnulink, = [Bus : =
B
..... 2| Commarly Used Blocks = signu:I Bus Assignment
..... 2 Continuous i

..... 2+ Discontinuities Bus Lreator

..... #+| Discrete

----- 2+ Logic and Bit Operations
..... 2+ Lookup Tables

..... 2| Math Operations A
..... 2| Madel Yerification —
..... #| Model-Wide Utilities

Buz Selector

[rata Store Memony

A [rata Store Read
..... 2+ Ports & Subsystems —
..... 2 Signal Attributes p—
..... m Signal Routing A [rata Store Wiite
..... B Sinks i
..... | Sources I D
..... 2+ User-Defined Functions
- . Sim
[+ y Additional Math & Discrete ot | Ervironmment Controller
..... W@ BEE_#PS Svstem Elockset R
- § CASPER DSP Blockset 4] From
..... 2 Accumulators

..... 2| Correlator
..... 2+ Delays " s

----- m Dawenconwerter

a- Bl FFTs e Goto Tag Wisibility

..... 2 Misc [

..... 2| Multipliers e Indes Wectar

- 2| PFBs

..... | Reorder _U\u- b arual Switch
_|:|

..... 2+ Scopes 'I
‘I I } [I bd o ;I

Ready A

We will only use the | samples for this design, the rest of the outputs will not be used. Attach a
Goto block in the Simulink Blockset from Signal Routing to each of the | outputs. Tip: It is
easy to duplicate blocks by dropping one block into the design, then Control-click the block and
drag, a duplicate block will appear. The Goto and From blocks are useful fro keeping a clean
design but are not necessary. We will use them because there is a summed power section and
snap block section of this design which use the same inputs but are separate subsystems.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 7

10— Tade0 0]]
= N i1 [Ja00_1] |
Sine Wave o — e TR
qll
ql
=im_q qi B
q3
outofrangeil p
outofrangeil p
-!-lTTOT Pl sim_zyne outofrangeql f
+H +HH H outofrangeq! p
Fulse synel p
Generator synel [
Synct f
sim_data_walid synes b
Constant data_walid |

ade

Each Goto block can be named by double-clicking the block and renaming the tag, for this de-
sign we used adc0 _i0...adc0_i3 for tag names. To use a From block double-click and rename the
tag to the name of the Goto tag you want to use. The ADC subsystem of our design is complete,
we now move onto a sync generator.

Sync Generator

It is often useful to have a sync pulse which keep all the parts of a design well...in sync. A sync
pulse is repeatedly generated after a specific number of clock cycles, the sync pulse propagates
through the design and will trigger various blocks along the way. In our case we will use it to
sum 8192 squared ADC samples(summed power) and write those samples to a BRAM to be read
off to a computer later. The sync pulse design is rather easy and only uses a few blocks.

Sync Fenerator
| outl—] (381|—#{in 0wt <o gen] |

Counter? Slices posedge

The first block is a counter which will run from 0 to 2047 and then start back at 0 again. The
choice of 2048 is based on the number of samples we will write to BRAM and sum up. The
Counter block is in the Xilinx blockset from Basic Elements.

Once you drop the block into the design double-click on the Counter block to set the parameters:
e Set Counter Type to Free Running
e Set Number of Bits to 11

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 8

[simulink Library Browser [_ =]
File Edit ‘Wiew Help

[S 4 8 oo

Counter: Configurable up, down and up/down counter.

Hardware notes: Free nning counters are the least espensive in hardware. & count limited
counter is implemented by combining a counter with a comparator.

EJ System Identification Toolbox ;l il
EJ Testbench Blockset g Coretant

=" B ilin: Blockset

..... #3 Basic Elemerits
[3 Communication
..... # Contral Logic ont
..... * Data Types
..... | Dap e Delay
----- # Index

----- | Math
J . l2 Do S ample
----- 2| Memary &=

Il chwmd b

[Z]source Block Parameters: Counter2 Ed

—#iling Counter Block [mazk] [link]

cast| Corvert

Configurable up, down and up/down counter.

Hardware notes: Free running counters are the least expenzive in hardware, & count limited counter iz
implemented by combining a counter with a comparator.

—Parameters

Counter Tupe | =g

Mumnber of Bits

11

Binary Point Pozition

[0

Anithrmetic Type| Unzsigned LI

Initial % alue
o

Step
[1

Count Directiunl Up LI

Sample Period

[1

[~ Provide Load Part

[~ Provide Reset Port
[~ Provide Enable Fort
[~ Ovenide with Doubles

| PE—— Show [mplementation Parameters

Ok I Cancel Help

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

The counter will increment by one on every clock cycle, we would like to use this fact to send out a
single pulse every 2048 clock cycles. There are probably a few ways to do this but the way that is
pretty easy so to select the highest bit, the so called MSB(most significant bit), and when it changes
from 0 to 1 then to send out a pulse. In every 2048 clock cycles the MSB will only go from 0 to 1
once, when the counter is going from 1023 to 1024. We can send a sync pulse out when we detect
this in the counter by using a Slice block and Posedge block.

Place a Slice block from Basic Elements in Xilinx into the design and connect the input of the Slice
to the output of the Counter.

[simulink Library Browser M=l E3

File Edit Wiew Help
0 = 43 #h ||ooto

Shce: Bit zhce extractor. Extracts a given range aof bits fram each input zample and presents it at
the output. The output twpe iz ordinarily unsigned with binan point at zero, but can be Boolean
when the slice iz one bit wide.

Hardware notes: In hardware thiz block costz nothing.

EJ System Identification Toolbo: ﬂ — d
EJ Testbench Blockset force(Feinterpret
=1 Nl ilinee Blockset
..... i g 1
| Basic Elements a=b[l Relational
- P Communication B

..... 2+ Contral Logic
..... | Data Types

= p| Sernal to Parallel

Sync

The Slice block outputs an extracted range of bits from its input, in our case we only want the
MSB. The output of the default Slice block will do exactly what we want.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 10

E Function Block Parameters: Slice3
—allire Shice Block [mazk] [link)

Bit zlice extractor. Extractz a given range of bitz fram each input zample and presents
it at the output. The output tppe iz ordinarly unzigned with binary point at zero, but can
be Boolean when the slice is one bit wide.

Hardware niotez: In hardware this block cozts nothing.

—Parameters

Specify Range .-i‘-.sl pper Bit Location + Width ;I
Width of Slice [number af bits]

[

Offzet of Top Bit

|

Felative Tu:ul MSE of Input ll
[Boolean Output

[T Use Explicit Sample Period

[T Oweride with Doubles

] Cancel Help Apply

The Posedge block from Misc in CASPER DSP blockset will output True when the input singal
is True and the previous signal was False. Drag this block into the design and connect it’s input
to the output of the Slice block.

[simulink Library Browser M= B3

File Edit Wiew Help
0) = 43 @ |Jooto

posedge: Outputs true if a boolean input signal iz true thiz clock and was falze last clock.

w23 Addional Math & Discrete. af[[¢ | oto []
..... W/ BEE_xP5 System Blackset "
a -
= W] CASPER DSP Blockset complex_addsub
b

..... y Accunulakors =

..... | Correlator edge
..... m Delays

..... | Downcoreeerter en addr

[]...m FFT= rst doﬁ:
..... | Misc

..... #| Mulkipliers
- 2 PFEs

..... m Reorder pozedge

freeze_cnir

negedge

----- | Scopes
(- Nl COMA Reference Blockset
... Wl nmrmnnicakinns Rlacksat

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 11

powEr

Finally add a Goto block from Signal Routing in the Simulink blockset to the output of the Po-
sedge block. Name the tag something useful like ‘sync_gen’. Now that we have a sync generator
and the outputs of the ADC we can build a subsystem that accumulates the summed power of the
analog inputs over a number of clocks and writes that value to a software register which we can
read over a network interface.

Sync Generatar

out [a:k] In Out < Tmyric_gen] |

Counter? Sliced posedge

Summed Power

The values coming out of the ADC represent the voltage levels of the analog inputs, these values
are related to the true voltages by a scale factor. Thus the power of the input signals can be com-
puted by squaring these voltage levels and the true power of a signal is related to this power by
another scale factor. For now we will not worry about this scale factor, and look at computing
the summed power of the signal. First we use the second part of our Goto/From signal routing
layout to place four From blocks each named to the corresponding Goto block from the ADC.
The From block is from Signal Routing in the Simulink blockset.

The next step is to square these values, the simplest way to do this is to use the Mult block in
Math from the Xilinx blockset. From each From block attach the output to both inputs of the
Mult block, use the Control-click method to create a extra wire.

Sum Pouwer

ol _-dab)
[olp _gab)
el gk
b _gab)p

W

et
Lu
=
W

(=g

It is important to consider the size of the data as it propagates through a design. The samples
from the ADC are of size 8.7 but when data has an arithmetic operation performed on it, such as
add or multiply, the output is not always the same size. In the case of a multiplying two 8.7 num-
bers the output will fit in a 16.14 number. Simulink can usually account for this growth, but
sometimes it is best to set a fixed size.

For the four Mult blocks we placed we can set this output size by double-clicking on each block:
e Set Precision to User-Definded, the parameters will then expand

e Set Number of Bits to 16
e Set Binary Point to 14

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 12

e For Output Type select Unsigned

) Function Block Parameters: Mult1 E

—ealling bultiplier (maszk] [link]

Multiplies bwa values.

Hardware notes: To uze the internal pipeline stage of the dedicated multiplier you must zelect 'Pipeline to
Greatest Extent Possible'.

—Parameters

F'lecisicnnl Usger Defined LI
||

COutput T_l,lpel Unzigned
Murnber of Bits

|16

Binary Foint

j14

E!uantizatiu:nnl Truncate

Lol Lo

Dverflowl YWirap

Latency

3

[~ Use Explicit Sample Period
[~ Provide Enable Part

[~ Oweride with Doubles

- Shaw Implementation Parameters

Ok I Cancel | Help | Lpply |

Since we will be computing the sum of the powers we will need to add together the samples. Rather
then using four duplicate paths to add up the four ADC samples on every clock we can just add the
four powers together after they are squared and then we will only need one path. To add the four
samples together we could easily construct an Adder Tree which will add any number of inputs using
a series of 2 input Add blocks. But since this is a common operation there is a prebuilt adder tree
which will scale based on the number of inputs a design requires. We want to place an Adder_tree
block from Misc in the CASPER DSP blockset.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 13

[simulink Library Browser [[C] =]

File Edit Wiew Help
O & - d#h footo

adder_tree: Sumsz all inputs uzing a tree of adds and delays.

i 2 Addtional Math & Discrete 4| [P
..... W@ BEE_#PS Svstem Elockset i
= Wl CASPER. D3P Elockset
_____ y Accumulators i out [bit_reverse
..... 2| Correlator
..... y Delays c " c_to_ri
..... 2| Downconverter -
- 2| FFTs = comples_addsub
.....] Misc i =
----- #| Multipliers
Eﬂ_,_g PFB:‘ edge

Double-click on the Adder_tree block and set Number of Inputs to 4, then click OK.

E Function Block Parameters: adder_treel x|

—adder_tree [mazk]

Sumz all inputz using a tree of adds and delays.

—Parameters
MHurnber of [nputs
f4

Add Latency

[1

k. Cancel Help Apply

Connect the outputs of the four Mult blocks to the inputs of the Adder _tree block. The Adder _tree
block also takes as input a sync, which is fine since we just created a sync generator for just this use.
Add a From block which is in Signal Routing from the Simulink blockset, double-click on the block
and set the tag name to the sync generator tag name. The connect the block to the sync input of the
Adder _tree.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 14

——na
[levnc_gen] sy
B2 gab) LT
B3 gab)—eldin
= &lp _-gab) dnz |
Wb gab) dind

E—u
adder_tree
latency 2

Now that we have summed the four samples we would like to add up this output 2048 times, and
output the result to a software register. Once the value is output to a register then the summed power
value should be reset to zero to begin summing the next 2048 samples. Lets start with an interme-
diate goal of summing 2048 samples then resetting the sum to zero. Here is the block layout, we’ll
step through each block.

nc en =Wnc
[=ync_g gkl
[ade0_in] 2 gab) Ao
[aded_i1] g _%ab) dinZ
[aded_iz] W3 zab) ding
dout cast a
[adcD_iZ] =]| g Aab) dind Convert ath —b-| z’
b Cralay1
adder_tree i
latency 2 AddSubd
dad

k=0

!1!" ¥
2

Constant® puge

The output from dout on the Adder_tree block first goes through a Convert block which outputs the
input data in a new bit size. The rationale for this is that we had a 16.14 number coming into the ad-
der tree, then by adding 4 samples together the bit size has grown to 18.14 (when adding the preci-
sion past the binary point does not increase). Then we will add 2048 18.14 number together which
will need an 29.14 number to hold the final total. We will actually set the number of bits to 32.14
since we will eventually be writing this value to a 32 bit register anyways. Lets place a Convert
block from Basic Elements in the Xilinx blockset and conncet the block’s input to the dout on the
Adder_tree block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 15

SIS B3

[T simulink Library Browser
File Edt Wiew Help
[& 43 @& Jooto
Convert: Type converzion block. The input iz prezented at the output after quantization and
overflow effects.

Hardware notes: Additiohal hardware iz uzed when rounding or saturation iz zelected and output
width iz less than the input width,

EJ Syskem Identification Toolbox ;I v =
W@ Testhench Blocksst 5 System Generator
= W dilirce Blockset 1

_____ y Biasic Elements » Addrezzable Shift Begister
- 33 Communication
..... #| Control Lagic
----- m Data Types
.....] DsP CE Clock Enable Probe
..... y Index
..... # Math
..... 531 emory Lo Concat
..... #| shared Memary
----- # Todls
..... B iline TP
- W ¥ilinz Reference Blockset
- W] wiline: HtremeDsP Kit

Black Box

k=1| Constant

Once you drop the block into the design double-click on the Convert block to set the parameters:

e Set Output Type to Unsigned
e Set Number of Bits to 32
e Set Binary Point to 14

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 16

=] Function Block Parameters: Convert

— il Comverter Block [mazk] (link)

lezz than the input width.

Type corwerzion block. The input is prezented at the output after quantization and owverflow effects.

Hardware notes: Additional hardware is uzed when rounding or zaturation iz zelected and output width is

—Parameters

Output Type | Ungioned

Murnber of Bits

=l

|32
Binary Foint

14

[luantization Behaviorl Truncate

Overflow B eha\-'iorl “Wrap

Latency

KENEN

[i
[~ Use Explicit 5 armple Period
[~ Oweride with Doubles

| Show Implementation Parameters

o |

Cancel

Help

Ay |

The next block is a AddSub block which we will use to add the output of the Adder_tree to the val-
ues from the previous clock cycles. One of the inputs is the Adder_tree output and the other input is
the essentially the output of itself. This may seem confusing, but it works as a simple accumula-
tor/summer as long as the other blocks are present. If the output of the AddSub block was connected
directly to its input then there would be a logic error, the block would need to know the output of it-
self before it could be computed. What we want to do is add a 1 clock delay to the output before it
reaches the input again. That way the AddSub block uses the it’s output from 1 clock before to com-
pute a new output, thus the block will act as an accumulator. We will worry about the intiail condi-

tion case and resetting after 2048 samples shortly.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

17

E! Simulink Library Browser [[T <]

File Edit “iew Help

[& & ¢ oo
AddSub: Addition or subltraction operator.

§| Syskern Identification Toolbox ;I b =
E| Testbench Blockset PN Accumulator
= Wl iline Blockset 4

----- 2+ Basic Elements Lo e

- 2 Communication

----- | Contral Logic > Chult

----- y Data Types

""" 2 D3P k=1 Constant -

----- B Index

..... Ha| Math

cast| Corwvert
----- m Memory

For now lets place an AddSub block from Math in the Xilinx blockset. Connect the first input to the
output of the Convert block and double-click on the block.

e Change Precision to User-Defined
e Set Number of Bits to 32
e Set Binary Point to 14

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 18

E! Function Block Parameters: AddSub1 4

—#ilime AddersSubtractor [mask] [link]

Addition ar zubtraction operatar.

—PFarameters

Made | Addition

F'recisic-nl User Defined

Lol Lef Lo

Cutput T_l,lpel |Inzigned
Murmber of Bits

32

Binary Point

14

Quantizatinnl Truncate

Le] Lo

Dverfluwl Wrap

Latency

fo

[+ Use Explicit Sample Period

Sample Period [use -1 ta inherit first known input period)
1

[~ Provide Camy-in Port

[~ Provide Carmy-out Part

[~ Provide Enable Part

[~ Dwenide with Doubles

e —— Show Implementation Parameters

QK I Cancel | Help | Al |

Then we delay the output of the AddSub block by one clock with a Delay block. Drop the Delay
block which is in Basic Elements in the Xilinx blockset and connect the input of the Delay block to
the output of the AddSub block. The default setting of the Delay block is to delay by 1 clock.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 19

[simulink Library Browser [_ [=]

File Edit %iew Help
[) &2 43 [ouo

Delay: Delay line having configurable length.

Hardware notes: & delay line iz a chain, each link of which iz an SRL1E followed by a flip-flop. [f
register retiming iz enabled, the delay line is a chain of Hip-flops.

W Svstem Identification Toolbox ;I CE Clock Enable Probe ;I
EJ Testbench Blockset
: " H
E|§_| #ilinx Blockset wl Concat
----- 2+ Basic Elements N

Eﬂ---y Cormrmunicakion
----- 2+ Control Logic
----- y Data Types

k=1 Constant

_____ y Dsp cast| Corwvert
..... y Tndex
..... y Math ontl Counter
..... y Mernary
..... y SharEd Memury I-1
----- y Toals
""" W xilinx 1P dz Down 5 ample
- Mgl wilire: Reference Blockset 7!

=) Function Block Parameters: Delay1 A

—iling Delay Block [maszk] [link]

Delay line having confiqurablz length.

Hardware nates: & delay ing iz a chain, gach ink of which iz an SEL1E fallowed by a fip-Hop. 1f register
retiming iz enabled. the delay line is a chain of flip-lops.

—Parameters
Latency
[1
[~ Enable Reagister Retiming
[~ Use Explicit Sample Period
[~ Provide Enable Part
[~ Owenide with Doubles

| Show Implementation Parameters

Ok I Cancel | Help | Apply |

If we hooked up the wire from the Delay block to the second input of the AddSub block we would
have 2 problems. The first is that our accumulator would loop forever and never reset, eventually we
would run out of bits. We need to use the our sync generator to set the second input of the AddSub
block to 0 every 2048 samples, thus resetting our accumulator. The second issue we have is the initial
value of the second input to the AddSub block need to be 0. We can solve both of these problems by

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 20

using a Multiplexer, or Mux. The Mux block has three inputs: sel, d0, and d1. The inputs dO and d1
can be any stream of data. The output od the Mux block is dependent on the sel input which select
which input to output, it is effectively a switch. We can use the Mux block to send the output of the
AddSub block to it’s own input 2047 times, then on the 2048 time switch to a 0 which resets our ac-

cumulator.
Drop a Mux block from Basic Elements in the Xilinx blockset into the design.

[simulink Library Browser M=
File Edit “iew Help

[& & ¢ oo

Mux: Bus Multipleser. Binary pointz are aligned automatically.

Hardware notes: & mulliplexer uzing tristate buffers requires fewer lookup tables but iz slower.

B 5ystem Identification Toolbox ;I ;I
EJ Testbench Blaockset fpt dbl| Gateway Out

=1 Nl silirc Blacksst

..... | Basic Elemnerts
[23 Commurication
..... P Contral Logic
----- 251 Data Types amt| LFSR

not IFrverter

..... y Indes and Logical

..... # Math

..... y Memury _
----- g Shared Memory

""" 2 Tools ‘ p =| Parallel to Serial

----- B il 1P
=3

... Wl ¥ilire Reference Rlincksat

m Function Block Parameters: Mux1 B4

—#iling Multiplexer Block [maszk] (link]

Busz Multiplexer. Binary points are aligned automatically.

Hardware notes: A multiplexer using tristate buffers requires fewer loakup tables Bt is slower.

—Parameters
Mumber of Inputsl 2 j
F'recisic-nl Full j
Latency
o

[~ Use Explicit Sample Period
[~ Provide Enable Paort
[~ Dveride with Doubles

| Show Implementation Parameters

QK I Cancel | Help | Apply |

Connect the sync_out on the Adder_tree to the sel input on the Mux block. Connect the output of
the Delay block to the dO input of the Mux block. To the d1 input of the Mux block we want to add a
constant O value. For this we need to use the Xilinx blockset constant and not the Simulink blockset

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 21

constant. As mentioned earlier, many of the blocks in the Simulink blockset are only used for simula-

tion and will not be compiled into a final bitstream. IN this case we want this constant value to be in
in our final design, so we use the Xilinx constant.

E! Simulink Library Browser M=
File Edit “iew Help

0 = <42 ¢ |Jooto

Consztant: Outputs a fised point congtant, Boolzan constant, or DSP48 instruction.

B syrplify DSP Blockset ;I — ;I
- T System Identification Toolbox g
@ Testbench Blockset i
EE ilir: Blockset Rl [EE—
¢ LB Basic Elements

2 Communication

- 2 Control Logic cast| Corwert

----- y Data Types
2l meD

| Concat

rnt! M nkar

Drop a Constant block from Basic Elements in the Xilinx blockset into the design and double-click
on the block:

e Set Constant Value to 0
e Set Number of Bits to 32
e Set Binary Point to 14

e Check Sampled Constant

Connect the output of Constant block to the d1 input of the Mux block. The output of the Mux

block can now be connected to the second input of the AddSub block. We now have a simple accu-
mulator which adds 2048 values, though we don’t have an output...yet.

CASPER Reference Design

iBOB ADC Tutorial (v1.0) March 24, 2009 22

E! Source Block Parameters: Constant8 B

—ailing Constant Block [maszk] [link]

inztruction.

Outputs a fised point constant, Boolean constant, or DSP48

—Parameters

Caonstant ¥ alue

|1

T_I,Ipel Inzigned
Humber of Bits

|32

Binary Point Fosition

|14
[+ Sampled Constant
Sample Period

[

[~ Oweride with Double

OF.

Cancel Help

Now that we have an accumulator we can take it’s output and place the value in a software register.
But, we have to be careful about what we put in that software register. Here is the final design of the
summed power subsystem. We’ll go through the last few blocks dealing with the software register.

Sum Fower

f

[svnc_gen] Sync

laded_in] 2 gab L R

[adc0_i1] = mln gab) din2

v i

[aded_ia]

[fade0_i0] ==

[[laded_i1] ==

[aded_iz] 2 gab) dinZ
P

[[adel_i3] == E -gab) dind Convert 5+b—P‘| =

b Delayl

adder_treet
Iateney 2 AddSub

y¥r

d " ;
at moon s o
&n of i

Pzl
v Register! sum_sq_ut
P]

=

Constantd pype

In this diagram the yellow block is the software register, we add another 2 blocks before it to make
sure the value is really the 2048 accumulated samples and that value is correctly written to the soft-

ware register.

Lets start with the register block. You’ll notice that the output of our accumulator is a wire branched
after the Delay block before the Mux block. If we wrote this value directly to a software register then
every clock cycle the software register would be updated and would not represent a total of 2048 ac-
cumulated values, it could be any number of accumulations. We would like the software register to
keep one value for 2048 clock cycles then update the register when 2048 new accumulations are
made. To do this we use a Xilinx Register block which will input all the values of the accumulator

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

23

over 2048 cycles, but will only output a value when the sync generator sends a signal to its enable
port. The sync generator is again the key to this design.

Select the Register block from Basic Elements in the Xilinx blockset.
E! Simulink Library Browser M= E3

File Edit “iew Help
D& 4 # oo

Reqister: Delay of one sample penod.

Hardware notes: Implemented using flip-flops.

- | System Identification Taolbo: | [
E| Testbench Blockset fpt dbl| Gateway Out
=1 Nl ilin: Blocksst
..... 2+ Basic Elements
- 2+ Communication a et
..... #| Contral Logic
..... %] Data Types ant| LF5SR
..... 3| D3P
..... y Indesx and Logical
..... 3 Math
..... B Memnary M
..... # shared Memary
""" 2] Tools p o =| Parallel ta Serial
..... & silinx 1P
- Nl wilinx Reference Blockset :
- W ilirx BtremeDSP Kit YN B

1| | » force| Reinteroret LI
A

Ready

Double-click on the Register block:
e Check the Provide Enable Port option

Once OK is clicked the block will have an en input which is the enable port. The Register will only
output when the enable port is set to 1. Connect the en port to a branched wire from the sync_out port
on the Adder _tree block. Connect a branched wire from the Delay block to the d port on the Regis-
ter block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 24

E! Function Block Parameters: Register1 E

—iline Fegister Block [mask) [link)

Delay of one zample period.

Hardware nates: Implemented uzsing flip-flops.

—Parameters

Initial * alue

[

[~ Usze Explicit 5ample Period

[~ Provide Reset Port

v Provide Enable Port

[~ Propagate Enable Sample Period
[~ Dwveride with Doubles

Shaow Implermentation Parameters

o |

Cancel

| Help | Spply

If you will recall we have a 32.14 binary value being placed into our Register block. But when we
place this value in the software register the output will be a 32.0 number since the software register
won’t know where there is a binary point. To be on the safe side we should fix the output of the Reg-
ister block to 32.0 before it is put in the software register. There is a Reinterpret block which will

do this.

Drop a Reinterpret block from Basic Elements in the Xilinx blockset onto the design, the defaults
of the block will set the binary point to 0. Connect the output of the Register block to the input of the

Reinterpret block.

[simulink Library Browser

File Edit Wiew Help

i =] E3

O & 47 @ |[goto

representation.

Hardware notes: In hardware thiz block costs nothing.

Reinterpret: Type reinterpreter. Changes bwpe of zamples without altering their binary

Fuarnnlas Sommmca Hha immib is B hike wida ciaead itk 3 fractine al bits zmd Baa soboab i

|

[+ 8 System Identification Toolbax

gont

&1 8] Testbench Blacksst
ElEJ wilirm: Blockset

and

y Basic Elements
- 3 Communication
- B Contral Logic

y Data Types
y Dsp

y Tndex
y Math

- 2] Memoary
- B Shared Memory

force

..... B ilin: TP

.. Bl wiline DeFerence Rlackaat

- 23 Todls |

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

|| Y 13

LFSR

Logical

kL

Parallel to Serial

Reqister

Reinterpret

Relational

25

E! Function Block Parameters: Reinterprets | x|

—adling Type Reinterpreting Block [mask] [ink)

Type reinterpreter. Changes type of zamples without altering their binary
representation.

Hardware notes: In hardware this block costs nothing.

Example: Suppoze the input iz B bitz wide, zsigned, with 2 fractional bitz, and the
output iz forced to unsigned with O fractional bitz. Then aninput of -2.0 (1110000 in

—Parameters

[v iForce Aithmetic Type

Output Arithmetic Type | Unsigned ;I
v Farce Binary Paoint Positian

Output Binary Point
0

The last block we need is the software register which represents a register which can be read over a
network interface. Drop a Software Register block from the BEE_XPS System blockset onto the
design. The default settings for this block are what we want. Connect the output of the Reinterpret
block to the reg_out input of the Software Register block. The name of this block is important for
when we later interact with the hardware over a network, name the block sum_sq_vit.

E! Simulink Library Browser _ =] =]

File Edit Wiew Help
[0 & 4a ¢4 Jooto

software register: =p:_libram/software register

..... # Sources :I — quads LI
----- m User-Defined Functions —_ |
[2 Additional Math & Discrete =
.. \gh| BEE_%PS System Blocksst :u et Shared BRAM
= I CASPER DSP Blockset =

..... y Accumulakors Shared FIFO

..... y Correlator
..... y Delays LT ammi | goftware register
..... y Downconverkber

- 3| FFTs ’_‘| aram

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 26

E! Function Block Parameters: sum_sq_vlt

—Subsystem [maszk] [link)]

—Parameters

[0 direction | R

Data Typel Unzigned ;I

Drata bitwidth
|32

Crata binary pairt
fo

Sample penod

f1

k. Cancel Help Spply

This subsystem is now complete, the last subsystem to design is a time domain data recorder using
snap block.

Time Domain Snap Block

Along with generating a summed power value every 2048 clock cycles it would be useful to write
those 8192 ADC samples which were used in the computation of the summed power to a piece of
memory which can be accessed from another machine. We can do this be writing the values to the
BRAM memory.

First create another set of ADC sample From blocks which are from Signal Routing in the Simu-
link blockset .These are 8.7 values and since we will not be manipulating the values, but just record-
ing them to BRAM they should be changed to 8.0 binary values using the Reinterpret block from
Basic Element in the Xilinx blockset. Place 4 of these blocks into the design and connect each to the
ADC From blocks.

Time Domain Data Snap EII-:--:kI

[foreeh
[foreeh
[foreeh

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 27

[T1simulink Library Browser M=l B3

File Edit Wiew Help

[) & <42 @ |oate

Reinterpret: Type reinterpreter. Changes type of zamples without alkering their binarg
representation.

Hardware notes: |0 hardware thiz block costz nothing.

e LI+

Cuzrnrla: Coimmemes Hoo ek ie B bike wide simmad ibh 3 Frankinemal kite 2ed Hus ookea b s
W@ svnplify DSP Blockset :I ;
W& System Identification Toolbox : ?| Perelelto Serd
EJ Testbench Blockset
ElEJ silir: Blockset @ 7la| - Register
: #| Basic Elements

y Cammunication foree| Reinterpret

..... 2 Cortrol Logic

..... | Data Types ® ab|l Relational

......] Dap oot

| —]

=] Function Block Parameters: Reinterpret

—Hiline Type Reinterpreting Block [mask] [link)

Type reinterpreter. Changes type of zamples withaut alkering their binany
represzentatian,

Hardware naotes: |n hardware thiz block costz nothing.

Example: Supposze the input iz B bitz wide. signed. with 2 fractional bitz, and the
autput ig forced o unzigned with O fractional bits. Then an input of -2.0 [1110.00 in

—Parareters

[V iForce Anithmetic Type!

Clutput &rithretic Tepe | Unzigned ll

[v Farce Binary Paoint Position

Qutput Binam Point
[0

k. Cancel Help Apply

Like the software register we use in the summed power subsystem the BRAM uses 32 bit memory
pieces. We have 8 bit data, a simple option is to reinterpret that 8 bit data as 32 bits, but that would
be a lot of wasted memory. A better method would be to concatenate 4 8 bit values into a 32 bit val-
ue. Then we would only need a BRAM of size 32 by 2048 to store the 8192 values. There is easily
enough a Concatenate block to do this.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 28

Time Domain Crata Snap EII-:-ch

| force——pmhi
T s cath
[(Tedo iz >—w{ ol —»
| foreef—mio

Concat

Place a Concatenate block from Basic Elements in the Simulink blockset onto the design and
double-click on it.

e Set Number of Inputs to 4
E! Simulink Library Browser =] Eq

File Edit ‘Wiew Help
0 & 40 ¢ Joo

Concat: Concatenates bwo or more inputs. Inputs must be unzigned with binary point at zera.
- W Synplify DSP Blockset - v . i -
1 W@ System Identification Taolbox - ystem enarator
EJ Testbench Blockset P
EI W zilin: Blockset g| Addressable Shift Register
=ddr
----- | Basic Elemnents
[3---@ Cornmunicakion Elack Box

----- 2 Control Logic

""" | Data Types CE Clock Enable Probe

..... - Dap

..... g Index] C t

I ancal
..... y Math 1o =
----- 2 Memar |—|
A . l:lll I L= sk zaak

E! Function Block Parameters: Concakt E

—Hilir Bus Concatenatar [rmaszk] [link)

Concatenates bwo or more inputs. Inputs must be unsigned with binary point at z2emo.

—Farameters

Murnber of Inputz| 4 ll

[Use Explicit Sample Period
[~ iDveride with Doubles:

] Cancel Help Lpply

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 29

Connect the outputs of the 4 Reinterpret blocks to the inputs of the Concatenate block.

Now that 4 values are packed in to 32 bit values they can be written to BRAM. The easiest way to
perform this task is to use the Snap block which takes in a 32 bit value and writes it to BRAM.

Time Domain Data Snap EII-:-ch

hi

cat din
la
[swnc_gen] trig
Concat
ve
Constant
snap

There are 3 inputs to the Snap block: din, trig, and we. The din input is data input, trig triggers the-
writing of data to the BRAM, and we is the write enable option. For this design we want to write
2048 32-bit values starting every time the sync generator sends a sync pulse. Write enable should be

set to 1 such that it is always on.

Drop a Snap block from Scopes in the CASPER DSP blockset, and double-click on the block.

e Set No. of Samples (2°?) to 11

[simulink Library Browser
File Edit Wiew Help

P =] 3

O = 4= i ||gu:utu:u

&4 bit capture].

snap: The <irznap</ix block provides a packaged solution to capturing data from
thie FPGEA fabric and making it accessible from the CPU. The block comes in
2 flavors: <irgnap<ix [which captures to a 32 bit wide Shared BRAM], and
<irznapbds< iy [which captures to 2632 bit wide Shared ERAM: to effect a

- 2 Additional Math & Discrete
..... W/ BEE_»PS System Blacksst
=\ CASPER D3P Blackset
..... y Accurulators
..... y Correlator
..... y Delays
..... y Dawnconverter
- 2 FFTs
----- B Misc
..... # Multipliers
Eﬂ"'y PFEs
..... # Reorder
..... # Scopes
[+ EJ ZDMn Reference Blockset

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

LI din

i zhap

an
iy zhaphd

30

m Sink Block Parameters: snap

—znap [mazk] [link]

The zmap block provides a packaged zolution to captunng data from the FPGA fabnic
and making it acceszible from the CPL. The block comes in 2 flavors: aap [which
captures to a 32 bit wide Shared BRAM], and aracés [which captures to 2232 bit wide
Shared BERAM: to effect a 64 bit caphure].

—FParameters

Ma. of samples(2”7)
f11

] Cancel Help Apply

After the Concatenate block there in order to make sure we are writing 32.0 data to the BRAM we
should add another Reinterpret block. Connect input of a default Reinterpret block from Basic
Elements in the Xilinx blockset to the output of the Concatenate block. Connect the output of the

Reinterpret block to the din input of the Snap block.

[simulink Library Browser I =]

File Edit Wiew Help

[& 4 4 [
Reinterpret: Type reinterpreter. Changes wpe of zamples without altering their binary j

representation,

Hardware notes: In hardware this block, costs nothing.

Fuaranlas Siimmnca Hha immnb is B hite wida cianad with 2 frachnmal kite aed Hha anbmot e

- El Synplify DSP Elockset: ;I L1 ;I
EJ Systemn Identification Toolbox M

i+ i Testbench Blockset

=" W silin: Blockset

..... #3| Basic Elements
EEI"-E Carmrmunicakion
..... y Control Logic

H..

p z| Parallel to Senial

a g Feqgister

..... | Daka Types
..... y Dsp farce Reinterpret
----- # Index
d
..... y rMath . _a1=bl Felational
..... y Mernory z
— |

CASPER Reference Design

iBOB ADC Tutorial (v1.0) March 24, 2009 31

E Function Block Parameters: Reinterpret4 | x|

—ling Tupe Reinterpreting Block [mazk] [link]

Type reinterpreter. Changes type of zamples without altering their binary
reprezentation.

Hardware notes: In hardware thiz block coztz nothing.

Example: Suppoze the input iz B bits wide, signed, with 2 fractional bits, and the
output i forced to unzigned with O fractional bits. Then aninput of -2.0 [17710.00 in

—Parameters

[v iForce Arithmetic Typei

Output Arithrmetic Type| Unzigned LI

v Force Binary Paoint Pozition

Output Binary Paint
[0

(] Cancel | Help | Apply |

For the trig input on the Snap block connect a From block to with the sync_gen tag such that the trig
input is connected to the sync generator.

Place a Constant from Basic Elements in the Xilinx blockset onto the design and double-click on
the block:

e Set Constant Value to 1
e Select Type to be Boolean

E! Simulink Library Browser P =]
File Edit Wiew Help

[& 40 ¢ oo

Conzstant: Outputs a fived point congtant, Boolean constant, or 0SP48 inztuction.

W svrplify DSP Blockset ;I — ;I
EJ System Identification Toolbox "0l concat

- W Testbench Blackset E

: - W Hiline Blockset

k=1| Caonstant

. B Basic Elements
- 2| Communication
..... y Control Logic cast| Corvert
..... | Data Types

$2d meo rut] ™ nber

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 32

=] source Block Parameters: Constant1 E

—ilites Conztant Block, [maszk) (link)

Cutputs a fised point constant, Boolean constant, or 0SP48
instruction,

—Parameters
Conztant ' alue
]
T_I,Ipel Boolean ;I

[T Sampled Constant
[T Owerride with Double

0k, Cancel Help

Connect the output of the Constant block to the we input of the Snap block.

Note on the Snap Block: The Snap block is a CASPER block which is made up of simpler blocks
which we can take a look at. Right-click on the block and select ““Look Under Mask”.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 33

Explare

Zut
Copy
Delete

Mask Paramekers, ..,
SubSystem Parameters, ..
Block Properties. ..

Model Advisor. ..

Requirements 3

Feal-Time Workshop k
Fixed-Poink Settings...

Mask Subsystent, . .

Look Under Mask
Link Qptions k

Signal & Scope Manager. ..

Fort Signal Properties k

r Forrmak 3

din Foreqground Calor 3
Background Colar k

[(Eme_gerl >——fiig 2P

A

Constanti

snap

A new window will appear and show the design of the block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009

E:_.__n adc_tutorial_test/snap *

File Edit Wew Simulation Format Tools Help

DBE&| 2R =y sfiin [iom | H@aBSs eEBE G ®

addr

data_in data_out

*VJ'

valid ._H-'lllllll'qn 8 -
' din Reintarpret

we

e
k=t d bram
Jen addr [—
» . » we 1
E = rst dong
trig1 .T 40i- P w4 freeze_cntr
trig "] and] 1t z1 q
k=1 d E &n
Registar
I d
pit 21 g
Bn
Constant13 el enable posedge b ~ddr
Registert
Ready [1002% |ode4s v

Finally, if all has gone well then we have a completed, but untested design.

CASPER Reference Design

35

iBOB ADC Tutorial (v1.0) March 24, 2009

MSEGE

&

1808
LwlP

System XSG core eonfig ibab_twip
Generator
o T
- it - de_it
- 5 >
Sine Wave 2 - [adel i3
q0
q1
<im_q a2 [svne_gen] Fyne
LA 3 e _out
outofrangeil [faden 0] T TR)2 gfabi) e
outofrangeit [ETE R 4) din2
e . sutofrangeqn
e sim_syno =
Radasdead outofrangeqt [adeD_i2] =& | b b)) dind
Pulse e ; = dout
Generatar symo [EEEEE] s 1) dind
e adder_treet
Censtant data_valid
ade
Syne Generator Time Domain Data Snap Ellod(l
out [0l <Jpme_gen] | N hi
Counterz Sliced posedge Tadai]
[adell_iz]
[adeD_i3] e

Delayl

il d
q force reg_out im_out -
0

sum_sq_vlt

Coneat

[syne_gen]

=

Constant!

snap

A useful option in seeing the number of bits going from different blocks is to turn on the Data Port
Types options which can be done by going to the Format menu — Port/Signal Displays — select Data

Tulakion |F|:|rmat Tools Help

Port Types.

CASPER Reference Design

| & B

Fant. ..
Text aligmment
Enable Ted Cammands

Nomal =] | B 4) S |

MSSGEE

3 core col

Flip Mame

Flip Elozh (Zhr|4-T
Rotate Black ZErlH-R,
Show Mame

Show Drop Shadow

Shaw Pork Labels

-

sim_i

Foregraund| Colar
Background Calar
Screen Calar

[aded_i0]
[[adel_i1] |
[[ade_iz] |
P | aden_iz] |

Wl

sim_q

PortSignal Displays
Black Displays
Library Link Display

Sample Time Calors

Port Data Types

F Signal Dimensions

-

sim_syne

outofrangeil
outofrangeil
autofrangeql
outofrangeag 1

syncl

R

synic

~

iBOB ADC Tutorial (v1.0) March 24, 2009

Storage Class
v Testpoint Indicaktors
v Wiewer Indicators
Wide Monscalar Lines

| |7 | || [TL

(=

36

e IBOBE
MESGE Laip
-
System X8 core config ibob_lwip
Generator

i0l
ﬂ._._ double i
bl i2
Sine Mave i3
q0
q1
=im_q q2
g
outofrangeil
outafrangeil
sim_syne outofrangeql
outofrangeq 1
FPulze synch
Generator Bl
double . . syned
I|v sim_data_walid sy
Censtant data_walid

Counter2 Slice?

posedge

Fix_8_7
Fix_8_7
Fix_§_7
Fix_8_7

YY¥YY¥Y

3do0_i0]

adad_it

3deD_i2,

[adeD_ia]

[adcD_i1]
[adeD_i2]

Sum Power

Buaol

adder_trea1
latency 2

..:._._m Domain Data Snap m_oor-

Convert m+_u|£ z

[Tadea_id] ﬂxlmh__ Toro cﬂxlm_ [hi
_ [aded_i1] _u_xlmh force _|'C_.|_x|m]
[Lade0_iz] Exlw force _|vr_3xlm] e
_ [adcd_i3] _q_xlm“__ PR C_.‘_xlm_ 1) la
Concat

|

Fix_32 14

b Delay1

AddSub1

k=0

Constant® pfuyse

UFix_32_0

[sync_gen] Bool trig

II Bool e

Constant1

znap

Yy

sum_sq_vlt

CASPER Reference Design

37

iBOB ADC Tutorial (v1.0) March 24, 2009

Test Simulations

Before compiling a design and placing the bitstream on a board it is useful to simulate the design and
look at how the output matches with what is expected. Simulations also find logical errors and make
sure blocks will work properly with their inputs. Simulink allows a design to simulated for a number
of clock cycles. It should be noted that the larger and more complex the design the longer Simulink
takes to simulate it. When we simulate a design there are various points along the design that we
would like to see. For this we use the Scope block which is in Sinks in the Simulink blockset.

E! Simulink Library Browser N =]

File Edit ‘“iew Help

[S 4 d4 o
Scope: simulink/Sinks/Scope

= N Sirnulink: o] [
----- #| Commaonky Used Blocks Display

----- # Continuous

----- m Discontinuities I:l Floating Scape
..... #3| Discrete

----- # Logic and Bit Operations Ot

..... # Lockup Tables

----- #+| Math Operations 1

E; [n] FIE!

----- F| Model Yerification

..... #+ Model-wide Utilitiss -
Stop Simulation

..... #| Parts & Subsystems
----- # Signal Attributes

----- # signal Routing Terminator
..... y Sirks
..... E SOUrCEs untitled.mat | Ta File |-

----- # User-Defined Functions
‘ I .. # additional Math & Discreke | _bILI zimaout ToWaorkzpace

Feady

Scope

N Kl

When a Scope block is first placed into a design there is only one input, this can be changed by
double-clicking on the block. The scope display will appear and clicking on the Parameters button
(second on the upper left) will bring up a new window. Then under the heading General the setting
Number of Axes sets the number of inputs. For this simulation we will use 5 inputs.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 38

) Scope M =] E3

SHELLL HEBE|OEF -

) 'Scope’ parameters M= |
Genersl | Data histary ‘ Tie: try right clicking on axes

Axes

Murbet of axes: E [tlosting =cope
AL Time range: Eu’[o
Tick labels: Ibuttom axiz anly v|
Time offset: 0O
Sampling

Decimation j |1

Ok | Cancell Help | Apply

The default scope history to remember is only 5000 cycles, we will be looking at more then 5000
cycles. In the Data History tab uncheck the Limit Data Points to Last option.

) "Scope’ parameters [_ =]
Genersl | Data hiztory Tigx: ey rigkt clicking on sxes

[~ Limit data points to last |5':":":'

[T Save datato workspace

“ariahle narmes IS::npeData

Format: IStructure with time j

Ok | Car‘u:ell Help | Apply

Now that our Scope block has 5 inputs we need one more block to get meaningful data out onto the
scope display. The values going from block to block have different bit lengths and different mean-
ings. These values should be converted to meaningful integer or float values for the scope. There is a
Gateway Out block which will do this. Places a Gateway Out block from Basic Elements in the
Xilinx blockset onto the design and duplicate the block for each Scope block input and connect the
output of the Gateway Out block to the input of the Scope block.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 39

E! Simulink Library Browser

File Edit Wiew Help

IS B3

[& 44 # oo

integer, double, or fised point.

Hardware notes: |n hardware these blacks become top level output parts ar are discarded,

Gateway Out: Gateway out block. Converts Ziline fiked point inputs into ouputzs of pe Simulink

! ; .
depending an how they are confiqured. ot dbl -:I-:-ul:-lg-I
§_| System Identification Toolbo: ;l & ;l & atewmay Out
Testbench Blockset a . d”'—'"'i
. % sl Blockset DE&D Expreszion fet dbl
- gx nekse G ateway Outd
Basic Elements deoubl
fpt dbl
- 2] Communication Gateway In P 2
y Control Logic @ ateway D"'tzd b
y Data Types fpt b [
g Dsp G ateway Out?
g Tnde:x ipt dbl dIZILIh|_E'|
- Be] Math Gat Dutd
ateway Ou
y Temary

Scope

The inputs on the Scope block can be hooked up to any wire in the design, feel free to pick some
wires to look at. You want to pick wires which will have meaningful outputs and help to determine
that the design is simulating properly. Below is an image of the wiring I used to check the design.

Fix 87
Fix_8_7
Fix 5 7
Fix 8 7

YYYY

tofrangeil)
tafrangait
offangeqld
offangeat
synold
syt
syned
syne3
$ata_valid

Sum Power

st doubl

Gateway Out

Bool

adder_treet
latency 2

UFin it Ui

alFix_32 14

) frt

Gatemay Qutd

ot bl S0

Gateway Outd

Convert

Delayt

Addsub 1o Lur sfsiten

‘d;p 14

Constant® st

sum_sq_ult

ot o] ot

Gatemay Outt

ot api] doubh

S ateway Outz

gy | doubk

Secope

The input to the ADC block will determine the output on the scope, at the beginning of the design we
placed a Sine Wave block onto the input of the ADC block. Doulble-click on the Sine Wav block
and make sure the settings are the same as the settings below, then click OK.

CASPER Reference Design

iBOB ADC Tutorial (v1.0) March 24, 2009

40

=] Source Block Parameters: Sine Wave E

—5Sine Wave

Dutput a sing wave:
O[] = Amp*Sin[Freqt+Phaze] + Bias

Sine wpe determines the computational technique uzed. The parameters in the bwo
twpes are related through:

Samples per period = 2%pi # [Frequency ™ 5 ample time]
Mumber of offzet zamples = Phaze * Samples per penod / [27pi]

|lze the zample-bazed sine wpe if numencal problems due to running for large imes
[e.0. overflow in abzolute time] occur.

—Parameters

SN T e baze

Tirme [t]:l I1ze simulation time LI
Amnplitude:;

[

Bias:

fo

Frequency [rad/zec]:

[
Phaze [rad]:
[0

Sample time;
[

[V Interpret vectar parameters as 1-D

k. Cancel Help

The Scope block will display the output of one of the ADC samples, the sync generator, the value of
the 4 summed samples before the accumulator, the value written to the software register, and the val-
ue in the accumulator. Now we want to simulate the design for many clock cycles. Since the design
uses a 2048 accumulator we want at least that many clocks simulated. The first few clock cycles
could have undefined output while the system settles. If we do 10000 clock cycles that should give
the system time to settle and show a few iterations of the accumulator. At the top of the design win-
dow there is a box with a Play button to the left of it. This box sets the number of cycles, put in
10000 and press the Play button.

E!adc_l:uturial_test &
File Edit “iew Simulation Format Tools Help

DISE&| & =22 2 n om0 [Noma || 5k |

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 41

Once the simulation has begun it will take a little time to finish. The progress of the simulation is
displayed at the bottom of the window.

[100% [T] [T=z2119.000 |odeds

sbep0ar - Paink |@il:u:ul:-_adu:_tutu:u...| J (7} 'f’

Once the simulation is complete then we can look at the output by double-clicking on the Scope
block. Enlarge the new window that appears and be sure to click on the Auto Scale button(pair of
Binoculars at the top of the window). The output should look something like the image below.

) Scope

FEIEEE R

4000 6000 9000 10000

The top window shows an ADC sample which should be a sine wave, we can zoom in on a portion to
see that it is a sampled sine wave ranging -1 to 1. The next window is the sync generator which is
triggering every 2048 clock cycles. The next window shows the four summed squared samples which
should have a range 0 to 4. The fourth window shows the value at the software register. That value
should be about the same since the input sine wave isn’t changing. The beginning of the window is
stepped because the first accumulation isn’t a full 2048 accumulation, this is why we give the system
time to settle. The last window is the value of the accumulator. For 2048 clocks the value always in-
creases then is reset to 0. The simulation looks good and the results are what we expected.

To zoom into a section of the simulation click-and-drag a box over the section to view.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 42

<) Scope

EEIEEE EEEEE

4060 4100

Now that our simulations look good we are ready to compile the design and test it out on an iBOB.

From here there are a few steps which we can work on the further:
FFT block/simulation: add an FFT portion to the design, and simulate the design
BEE_XPS: run BEE_XPS to generate a bit file
Loading design onto an FPGA: physically load a design onto an iBOB
Telnet to iBOB: login to the iBOB and look at the software registers and brams

Revision History

Date Revision Changes

March 23, 2009 v1.0 Initial revision.

CASPER Reference Design
iBOB ADC Tutorial (v1.0) March 24, 2009 43

