I agree that the difference in Rwork to Rfree is quite acceptable at your resolution. You cannot/ should not use Rfactors as a criteria for structure correctness. As Ian points out - choosing a different Rfree set of reflections can change Rfree a good deal. certain NCS operators can relate reflections exactly making it hard to get a truly independent Free R set, and there are other reasons to make it a blunt edged tool.

The map is the best validator - are there blobs still not fitted? (maybe side chains you have placed wrongly..) Are there many positive or negative peaks in the difference map? How well does the NCS match the 2 molecules?

etc etc.
Eleanor

George M. Sheldrick wrote:
Dear Sun,

If we take Ian's formula for the ratio of R(free) to R(work) from his paper Acta D56 (2000) 442-450 and make some reasonable approximations,
we can reformulate it as:

R(free)/R(work) = sqrt[(1+Q)/(1-Q)]  with  Q = 0.025pd^3(1-s)

where s is the fractional solvent content, d is the resolution, p is
the effective number of parameters refined per atom after allowing for
the restraints applied, d^3 means d cubed and sqrt means square root.

The difficult number to estimate is p. It would be 4 for an isotropic refinement without any restraints. I guess that p=1.5 might be an appropriate value for a typical protein refinement (giving an R-factor ratio of about 1.4 for s=0.6 and d=2.8). In that case, your R-factor ratio of 0.277/0.215 = 1.29 is well within the allowed range!

However it should be added that this formula is almost a self-fulfilling prophesy. If we relax the geometric restraints we
increase p, which then leads to a larger 'allowed' R-factor ratio!

Best wishes, George


Prof. George M. Sheldrick FRS
Dept. Structural Chemistry,
University of Goettingen,
Tammannstr. 4,
D37077 Goettingen, Germany
Tel. +49-551-39-3021 or -3068
Fax. +49-551-39-2582


Reply via email to