
24. Migration

Going from one CDK release to another brings in API changes. While the
project tries to keep the number of changes minimal, these are inevitible.
This chapter discusses some API changes, and shows code examples on
how to change your code. Section 24.1 discusses changes from 1.4 to
1.6, Section 24.2 discusses changes from 1.2 to 1.4, Section 24.3 discusses
changes from 1.0 to 1.2, and Section 24.4 discusses changes from 1.0 to
1.4.

The set of changes include changed class names. For example, the CDK
1.2 class MDLWriter is now called MDLV2000Writer to reflect the V2000
version of the MDL formats.

24.1. CDK 1.4 to 1.6

This section highlights the important API changes between the CDK 1.4
and 1.6 series.

24.1.1. Removed classes

Several classes have been removed in this version, for example, because
they are superceeded by other code or were considered redundant.

Removal of the NoNotify interface implementation

The NoNotificationChemObjectBuilder and the matching implementa-
tion classes are removed. Please use the SilentChemObjectBuilder in-
stead. The same, of course, applies to all implementation classes. For
example, NNMolecule is removed.

Removal of IMolecule

The IMolecule interface and all implementing classes have been removed.
They were practically identical in functionality to the IAtomContainer in-
terface, except the implication that the IMolecule was for fully connected
structures only. This separation was found to be complicated, and was
therefore removed. Please use the IAtomContainer interface instead.

167

24. Migration

24.1.2. Renamed classes and methods

Rename of IteratingMDLReader to IteratingSDFReader

Strictly speaking the MDL files span a set of files and a SD file is different
from a molfile. This is reflected in the reader name change: Iterating-
MDLReader is now called IteratingSDFReader.

CDKAtomTypeMatcher.findMatchingAtomTypes()

The method findMatchingAtomTypes of the CDKAtomTypeMatcher gained
a ’s’ and was previously called findMatchingAtomType. The new name is
more consistent, reflecting the fact that it perceives atom types for all
atoms.

24.1.3. Changed behavior

Some classes and methods have the same API, but have slightly different
behavior as before. For example, the SmilesGenerator now requires that
all atoms have implicit hydrogen counts set. This can be done with the
CDKHydrogenAdder as explained in Section 14.4.

24.1.4. Constructors that now require a builder

The advantage of the builders in the CDK is that code can be independent
of data class implementations (and we have three of them in CDK 1.6, at
this moment). Over the past years more and more code started using the
approach, but that does involve that more and more class constructors
take a IChemObjectBuilder. CDK 1.6 has two more constructors that
now take a builder.

DescriptorEngine

The DescriptorEngine constructor is changed to now take a IChemOb-
jectBuilder which is needed to initialize descriptor instances.

SMARTSQueryTool

The second constructor that now needs a IChemObjectBuilder is that
of the SMARTSQueryTool. Here it is passed on to the SMARTSParser
which needs it for its data structure for the matching.

ModelBuilder3D

The getInstance() method of the ModelBuilder3D class now also requires
a IChemObjectBuilder. See Section 14.6.

168

24.1. CDK 1.4 to 1.6

CDKAtomTypeMatcher

A significant change in the CDKAtomTypeMatcher behavior is that it
now returns a special ’X’ atom type when no atom type could be per-
ceived. See Section 12.2.4.

24.1.5. Static methods that are no longer

Some previously static methods are no longer, and now require the in-
stantiation of the class.

UniversalIsomorphismTester

The UniversalIsomorphismTester is an example class that now needs to
be instantiated. However, the class is easy to instantiate. For example:

Script 24-1: code/Isomorphism.groovy

butane = MoleculeFactory.makeAlkane(4);

isomorphismTester = new UniversalIsomorphismTester()

println "Is isomorphic: " +

isomorphismTester.isIsomorph(

butane, butane

)

24.1.6. IsotopeFactory

A major API change happened around the IsotopeFactory. Previously,
this class was used to get isotope information, which it gets from an con-
figurable XML file. This functionality is now available from the XMLIso-
topeFactory class. However, to improve the speed of getting basic isotope
information as well as to reduce the size of the core modules, CDK 1.6
introduces a Isotopes class, which contains information extracted from
the XML file, but is available as a pure Java class. The APIs for getting
isotope information is mostly the same, but the instantiation is much
simpler, and also no longer requires an IChemObjectBuilder:

Script 24-2: code/IsotopesDemo.groovy

isofac = Isotopes.getInstance();

uranium = 92;

for (atomicNumber in 1..uranium) {

element = isofac.getElement(atomicNumber)

}

169

24. Migration

24.1.7. IFingerPrinter

The IFingerprinter API was changed to accomodate for two types of fin-
gerprints: the bit fingerprint, outlined by the IBitFingerprint interfaces,
and the count fingerprint, defined in the ICountFingerprint interface. The
IFingerprinter interface now defines getRawFingerprint(IAtomContainer),
getCountFingerprint(IAtomContainer), and getBitFingerprint(IAtomContainer).
These methods returns various kind of fingerprints. For example, ge-
tRawFingerprint(IAtomContainer) returns a Map with Strings representing
the various parts of the fingerprint as well as the matching count, and it is
this map that is used as input to the getCountFingerprint(IAtomContainer)
method, which returns this information as a ICountFingerprint implemen-
tation. If the count for each bit is not important, the getBitFinger-
print(IAtomContainer) method can be used, which returns a IBitSetFin-
gerprint implementation.

Because the previous Fingerprinter interface did not include the count-
ing of how often a bit was set, implementing the new getRawFinger-
print(IAtomContainer) method will likely take some effort, but the other
two methods can in many cases just wrap other methods in the class, as
shown in this example code:

Script 24-3: code/FingerprinterMigration.java

public ICountFingerprint getCountFingerprint(

IAtomContainer molecule

) throws CDKException {

return new IntArrayCountFingerprint(

getRawFingerprint(molecule)

);

}

public IBitFingerprint getBitFingerprint(

IAtomContainer molecule

) throws CDKException {

return new BitSetFingerprint(

getFingerprint(molecule)

);

}

}

24.1.8. SMILESGenerator

The SMILES stack is replaced in this CDK version. This introduces a
few API changes, outlined here. The new code base is much faster and

170

24.2. CDK 1.2 to 1.4

more functional that what the CDK had before. Below are typical new
SmilesGenerator API usage.
Generating unique SMILES is done slightly differently, but elegantly:

Script 24-4: code/UniqueSMILES.groovy

generator = SmilesGenerator.unique()

smiles = generator.createSMILES(mol)

println "$smiles"

Because SMILES with lower case element symbols reflecting aromatic-
ity has less explicit information, it is not my suggestion to use. Still, I
know that some of you are keen on using it, for various sometimes logical
reasons, so here goes. Previously, you would use the setUseAromatici-
tyFlag(true) method for this, but you can now use instead:

Script 24-5: code/AromaticSMILES.groovy

generator = SmilesGenerator.generic().aromatic()

smiles = generator.createSMILES(mol)

println "$smiles"

24.2. CDK 1.2 to 1.4

This section highlights the important API changes between the CDK 1.2
and 1.4 series.

24.2.1. Creating objects with an IChemObjectBuilder

One very prominent changes is how the IChemObjectBuilder works (see
Section 10).
The CDK 1.2 code:

IChemObjectBuilder builder =

DefaultChemObjectBuilder.getInstance();

IMolecule molecule = builder.newMolecule();

molecule.addAtom(builder.newAtom("C"));

looks now like:

Script 24-6: code/MigrationNewBuilder.groovy

IChemObjectBuilder builder =

DefaultChemObjectBuilder.getInstance();

IAtomContainer molecule = builder.newInstance(

171

24. Migration

IAtomContainer.class

);

molecule.addAtom(

builder.newInstance(IAtom.class, "C")

);

Please note that the builder.newInstance() method may actually return
null. This is not the case for the DefaultChemObjectBuilder, or the al-
ternative SilentChemObjectBuilder builder, but future releases may have
dedicated builders that do have such functionality. However, these builder
would not supposed to be used for building molecules anyway.
The general patterns of newInstance() calls is that the first argument is
the interface for which you want an instance. All further parameters
are passed as parameters for the object’s constructor. The builder maps
the input to appropriate class constructors. To know what parameters
you can pass when instantiating an IAtom with the DefaultChemObject-
Builder, you would look at the constructor of Atom. Therefore, we can
also call:

Script 24-7: code/MigrationNewBuilder2.groovy

IAtom atom = builder.newInstance(

IAtom.class, "C", new Point2d(0,0)

);

A full overview of the available IChemObjectBuilders is found in Chap-
ter 10.

24.2.2. Implicit hydrogens

A second API change lies deep in the IAtom interface. To reflect more ac-
curately the meaning of the method, the IAtomType.getHydrogenCount()
has been renamed to IAtomType.getImplicitHydrogenCount(), and likewise
the setter methods. The 1.2 code:

carbon.setHydrogenCount(4);

has to be updated to:

Script 24-8: code/MigrationImplicitHydrogens.groovy

carbon.setImplicitHydrogenCount(4);

Yeah, that is a simple one. Just to make clear, in both versions the count
reflected the number of implicit hydrogens. The getHydrogenCount() sug-
gested, however, to return the number of all hydrogens attached to that
atom, that is, the sum of implicit and explicit hydrogens. See also Sec-
tion 3.4.

172

24.3. CDK 1.0 to 1.2

24.2.3. Iterating readers

Up to CDK 1.4.7 the IIteratingChemObjectReader implementations had
a next() method that returned a IChemObject class. Depending on the
file format, this could be a IChemModel or an IAtomContainer. The
interface now uses generics, however, and the next() method now returns
an IAtomContainer or IChemModel, making casting in the user code
obsolete.

24.3. CDK 1.0 to 1.2

This section highlights the important API changes between the CDK 1.0
and 1.2 series.

24.3.1. MFAnalyser

Version 1.2 removed the MFAnalyser class in favor of a more elaborate
framework to handle molecular formulas. Please refer to Sections 3.3.3
and 14.7 for more detail on the new framework.

24.4. CDK 1.0 to 1.4

As discussed elsewhere, the CDK 1.2 series was released without rendering
support (see Chapter 15), because the rendering engine was undergoing
a complete rewrite. A good part of this has been finished, and a new
rendering API is now available. The changes are too extensive to discuss
here, and the reader is refered to new API discussed in Chapter 15 and
start from scratch.

173

