To build Accelio & Ceph from source and manually start the cluster with two nodes

Two nodes:
+ Node 1: vlab-026, ipaddr (10.20.1.26), rdma ipaddress (12.20.1.26)
+ Node2: vlab-027, ipaddr (10.20.1.27), rdma ipaddress (12.20.1.27)

1. Install RDMA driver stack. Default RDMA package from distributions (RHEL, Ubuntu, SLES,…) can be used:

RedHat (RHEL 6.4 and above)
 yum groupinstall "Infiniband Support"
 yum install libtool autoconf automake
 yum install infiniband-diags perftest libibverbs-utils librdmacm-utils
 yum install librdmacm-devel libibverbs-devel numactl numactl-devel libaio-devel libevent-devel

Ubuntu (Ubuntu 13.04 and above)
 apt-get install libtool autoconf automake build-essential
 apt-get install ibverbs-utils rdmacm-utils infiniband-diags perftest
 apt-get install librdmacm-dev libibverbs-dev numactl libnuma-dev libaio-dev libevent-dev

However RDMA libraries and kernel stack provided by MLNX_OFED package is recommended.
MLNX_OFED_LINUX-2.4-1.0.0 is recommended and can be downloaded here - http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers

2. Make sure rdma is working with rping, rdma_client/server…
vlab-026 ~ > rping -s -a 12.20.1.26 -v

vlab-027 ~> rping -c –a 12.20.1.26 -v

3. Download Accelio source, build & install latest MASTER branch

NOTES: Please note that the following instructions showing how to build and install both Accelio and Ceph into non-standard locations (/opt/accelio, /opt/ceph)

$ git clone git://github.com/accelio/accelio.git accelio.git
$ cd accelio.git
$ git checkout -b master --track origin/master
$./autogen.sh
$./configure --prefix=/opt/accelio
$ make && make install

4. Making sure Accelio is working

The following test and measure Accelio performance with one-way message.
On server node:
vlab-026 ~> cd accelio.git
vlab-026 ~> tests/usr/hello_test_ow/run_ow_server.sh 12.20.1.26 1234 0 4096 rdma

On client node:
vlab-027 ~> cd accelio.git
vlab-027 ~> /usr/hello_test_ow/run_ow_client.sh 12.20.1.26 1234 0 4096 rdma

5. Download upstream ceph source, build & install
$ git clone --recursive https://github.com/vuhuong/ceph-upstream ceph.git
$ cd ceph.git
$ git checkout -b wip-xio-mkcephfs --track origin/wip-xio-mkcephfs
 (wip-xio-mkcephfs branch is cloned from ceph’s upstream master + mkcephfs tool patch)
$ git submodule update

If you don’t need /want mkcephfs command to build your ceph cluster, you can download and build from ceph upstream
$ git clone --recursive https://github.com/ceph/ceph ceph.git
$ cd ceph.git
$ git checkout -b master --track origin/master

a. To build with CMAKE
$ mkdir build; cd build
$ cmake -DCMAKE_INSTALL_PREFIX=/opt/ceph -DWITH_XIO="/opt/accelio/" -DCMAKE_CXX_FLAGS="-O3 -g -gdwarf-4" -DCMAKE_C_FLAGS="-O3 -g -gdwarf-4" ..
$ make –j32
$ make install
$ chmod a+x mkcephfs; cp mkcephfs /opt/ceph/bin/

b. To build with automake (please also read README.xio for more information)
$./autogen.sh
$ CFLAGS="-I/opt/accelio/include -L/opt/accelio/lib" CXXFLAGS="-I/opt/accelio/include -L/opt/accelio/lib" ./configure --prefix=/opt/ceph --enable-xio
$ make -j32 && make install

6. This is the example ceph.conf used in this cheat-sheet.

NOTES: XioMessenger currently DOESNOT support CephX. Please disable it from your ceph.conf

[global]

	admin_socket = /ceph-test/var/run/ceph/ceph-$name.$id.asok

	; allow to open a lot of files
	max_open_files = 131072

	; setup logging
	log_file = /ceph-test/var/log/ceph/$name.log
	pid_file = /ceph-test/var/run/ceph/$name.pid

	filestore_xattr_use_omap = 1

	osd_pool_default_size = 1
	osd_pool_default_min_size = 1

	; turn off debugs
	debug_auth = 0/0
	debug_asok = 0/0
	debug_buffer = 0/0
	debug_client = 0/0
	debug_context = 0/0
	debug_crush = 0/0
	debug_crypto = 0/0
	debug_filer = 0/0
	debug_filestore = 0/0
	debug_finisher = 0/0
	debug_heartbeatmap = 0/0
	debug_journal = 0/0
	debug_journaler = 0/0
	debug_lockdep = 0/0
	debug_monclient = 0/0
	debug_mon = 0/0
	debug_monc = 0/0
	debug_ms = 0/0
	debug_objclass = 0/0
	debug_objecter = 0/0
	debug_objectcacher = 0/0
	debug_optracker = 0/0
	debug_osd = 0/0
	debug_paxos = 0/0
	debug_perfcounter = 0/0
	debug_rados = 0/0
	debug_rbd = 0/0
	debug_rgw = 0/0
	debug_timer = 0/0
	debug_tp = 0/0
	debug_throttle = 0/0

	; debug XIO
	debug_xio = 0

; default datacrc & headercrc is true
ms_crc_header = false
ms_crc_data = false

	; rdma setting
; no secure authentication – A MUST for RDMA
; XioMessenger currently does not support CEPHX

	auth_supported = none
	auth_service_required = none
	auth_client_required = none
	auth_cluster_required = none

	rdma_local = 12.20.1.117
	enable experimental unrecoverable data corrupting features = ms-type-xio
	ms_type = xio
	;xio_queue_depth = 128
	xio_mp_max_64 = 262144
	xio_mp_max_256 = 262144
	xio_mp_max_1k = 262144
	xio_mp_max_page = 131072
	xio_portal_threads = 8

	osd_op_threads = 2
	filesore_op_threads = 4
	filestore_fd_cache_size = 64
	ms_dispatch_throttle_bytes = 0

	osd_op_num_threads_per_shard = 1
	osd_op_num_shards = 25
	filestore_fd_cache_shards = 32
	throttle_perf_counter = false

	rbd_cache = false

[osd]
	osd_client_message_size_cap = 0
	osd_client_message_cap = 0
	osd_enable_op_tracker = false

	osd_data = /ceph-test/ceph-data/osd.$id
	osd_journal = /ceph-test/ceph-data/osd.$id/journal
	osd_journal_size = 256
	osd_scrub_load_threshold = 2.5
	;osd_objectstore = memstore
	osd_mkfs_type = xfs
	osd_mount_options_xfs = rw,noatime

	osd_class_dir = /opt/ceph/lib/rados-classes
	
[osd.0]
	host = vlab-026
	
	devs = /dev/ram0
	ms_bind_port_min = 7100
	ms_bind_port_max = 7200

[osd.1]
	host = vlab-026
	
	devs = /dev/ram1
	ms_bind_port_min = 7201
	ms_bind_port_max = 7300

; To have mkcephfs creating cluster with more OSDs on other node ex: vlab-028
;[osd.2]
;	host = vlab-028
	
;	devs = /dev/ram0
;	ms_bind_port_min = 7100
;	ms_bind_port_max = 7200
;[osd.3]
;	host = vlab-028
	
;	devs = /dev/ram1
;	ms_bind_port_min = 7201
;	ms_bind_port_max = 7300

[mon]
	mon_data = /ceph-test/ceph-data/mon.$id

[mon.0]
	host = vlab-026
	mon_addr = 12.20.1.26:16789
	;user = root

[mds]
	; where the mds keeps its secret encryption keys
	keyring = /ceph-test/ceph-data/keyring.$name

	cluster_addr = 12.20.1.26:26789
	public_addr = 12.20.1.26:36789

	objecter_timeout = 10
	mds_reconnect_timeout = 5
	mds_beacon_interval = 2

[mds.0]
	host = vlab-026
	;user = root

7. Make sure XioMessenger working with xio_client/xio_server
On server node:
vlab-026 ~> cd ceph.git/build/
vlab-026 ~> LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" ./src/test/xio_server -c /ceph-test/cl_mkcephfs/ceph.conf --addr 12.20.1.26 --port 1234 --dfast

On client node:
vlab-027 ~> cd ceph.git/build/
vlab-027 ~> LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" ./src/test/xio_client -c /ceph-test/cl_mkcephfs/ceph.conf --addr 12.20.1.26 --port 1234 --dfast

8. Manual deployment the cluster

Prerequisites:
· This ceph.conf example uses ramdisk /dev/ram0, /dev/ram1 (size > 500MB) as filestore OSD
· Create necessary non-standard directories for ceph-mon & ceph-osd data, logs...etc…
vlab-026 ~> mkdir –p /ceph-test/ceph-data /ceph-test/cl_mkcephfs /ceph-test/var/log/ceph /ceph-test/var/log/ceph

vlab-027 ~> mkdir –p /ceph-test/ceph-data /ceph-test/cl_mkcephfs /ceph-test/var/log/ceph /ceph-test/var/log/ceph

· Copy the corresponding ceph.conf for each server to /ceph-test/cl_mkcephfs/ directory

Create mon & osd data on vlab-026

vlab-026 ~> LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" /opt/ceph/bin/mkcephfs -a -c /ceph-test/cl_mkcephfs/ceph.conf -k /ceph-test/cl_mkcephfs/keyring -d /ceph-test/ceph-data --mkfs

Manual launch ceph-mon on vlab-026

vlab-026 ~> LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" /opt/ceph/bin/ceph-mon -i 0 --pid-file /ceph-test/var/run/ceph/mon.0.pid -c /ceph-test/cl_mkcephfs/ceph.conf --cluster ceph

Verify if ceph-mon is up & running from vlab-027

vlab-027 ~> LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" /opt/ceph/bin/ceph -s -c /ceph-test/cl_mkcephfs/ceph.conf --cluster ceph

Manual launch ceph-osd on vlab-026

vlab-026 ~> LD_LIBRARY_PATH="/opt/accelio/lib;/opt/ceph/lib" /opt/ceph/bin/ceph-osd -i $i --pid-file /ceph-test/var/run/ceph/osd.$i.pid -c /ceph/test/cl_mkcephfs/ceph.conf --cluster ceph

NOTES: Please remember to pass LD_LIBRARY_PATH=/opt/accelio/lib;/opt/ceph/lib” to all commands (ceph, fio, qemu…). For example:

check status: ceph -s
$ LD_LIBRARY_PATH="/opt/ceph/lib:/opt/accelio/lib" PYTHONPATH="/opt/ceph/lib/python2.7/site-packages/" /opt/ceph/bin/ceph -s -c /ceph-test/cl_mkcephfs/ceph.conf --cluster ceph
create pool
$ LD_LIBRARY_PATH="/opt/ceph/lib:/opt/accelio/lib" PYTHONPATH="/opt/ceph/lib/python2.7/site-packages/" /opt/ceph/bin/ceph osd pool create testpool1 512 512 -c /ceph-test/cl_mkcephfs/ceph.conf --cluster ceph

create image
$ LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" /opt/ceph/bin/rbd -p testpool1 --image-format 2 create --size 128 test_img1 -c /ceph-test/cl_mkcephfs/ceph.conf --cluster ceph

To run fio
$ cp /ceph-test/cl_mkcephfs/ceph.conf /etc/ceph/ceph.conf
$ vi examples/rbd.fio (change pool=testpool1 rbdname=test_img1)
$ LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" PYTHONPATH="/opt/ceph/lib/python2.7/site-packages/" ./fio examples/rbd.fio

To launch VM with qemu-rbd image
$ LD_LIBRARY_PATH="/opt/ceph/lib;/opt/accelio/lib" qemu-system-x86_64 -m 1024 -cpu qemu64,+vmx -cdrom /mnt/ubuntu-mini-remix-14.04-amd64.iso -boot d -vnc 0.0.0.0:1 -drive file=rbd:testpool1/test_img1:conf=/ceph-test/cl_mkcephfs/ceph.conf,index=0,media=disk,if=virtio -enable-kvm &
