In this dataset, lat and lon aren't coordinate variables, they're
auxiliary coordinate variables.  There's no requirement that auxiliary
coordinate variables be monotonic or lacking in missing_values.  Your
coordinate variables will be the ones associated with the I and J
dimensions of the arrays.

To make this data CF compliant, I believe all you'll have to do is:

1) Make sure there are coordinate variables for the I and J dimensions.
 (These can just have nondimensional dummy values.)

2) List the lat and lon variables in the coordinate attribute of each
data variable.

Cheers,

--Seth


On 2/5/14 1:49 PM, Signell, Richard wrote:
> CF folks,
> 
> Many ocean models have curvilinear grids, but most of the ones I've
> encountered have 2D coordinate variables lon,lat that are monotonic
> and have no missing_values.
> 
> The NOAA forecast model for the St. Johns River Operational Forecast
> System, however, has a complex geometry, and used a grid generator
> that allowed for "cuts" in the grid, so that in the resulting grid
> system lthe coordinate variables on/lat are not monotonic and  have
> missing values.
> 
> I did an experiment to see if I could fill in the missing lon/lat
> values via interpolation, but this exercise only made it clear that
> this cannot work, as the data being interpolated are not monotonic.
> 
> Check out the first figure here to see the issue:
> https://www.wakari.io/sharing/bundle/rsignell/SJROFS
> 
> Is there any way this operational forecast data could be made to be CF
> compliant?
> 
> Thanks,
> Rich
> 
_______________________________________________
CF-metadata mailing list
[email protected]
http://mailman.cgd.ucar.edu/mailman/listinfo/cf-metadata

Reply via email to