ACLE 2.0 [1] allows __fp16 to be used as a function argument or return type. 
This enables this for AArch64.

I have not enabled this for 32-bit ARM targets yet, as we are expecting to 
release an updated version of the 32-bit AAPCS soon, which changes the handling 
of __fp16 in a non backwards-compatible way.

This also fixes an existing bug that causes clang to not allow homogeneous 
floating-point aggregates with a base type of __fp16. This is valid for 
AAPCS64, but not for AAPCS-VFP.

[1] 
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf

http://reviews.llvm.org/D4456

Files:
  include/clang/Basic/LangOptions.def
  include/clang/Driver/CC1Options.td
  lib/CodeGen/CGCall.cpp
  lib/CodeGen/CGExprScalar.cpp
  lib/CodeGen/CodeGenTypes.cpp
  lib/CodeGen/CodeGenTypes.h
  lib/CodeGen/TargetInfo.cpp
  lib/Driver/Tools.cpp
  lib/Frontend/CompilerInvocation.cpp
  lib/Sema/SemaType.cpp
  test/CodeGen/arm64-aapcs-arguments.c
Index: include/clang/Basic/LangOptions.def
===================================================================
--- include/clang/Basic/LangOptions.def
+++ include/clang/Basic/LangOptions.def
@@ -126,6 +126,7 @@
 LANGOPT(OpenCL            , 1, 0, "OpenCL")
 LANGOPT(OpenCLVersion     , 32, 0, "OpenCL version")
 LANGOPT(NativeHalfType    , 1, 0, "Native half type support")
+LANGOPT(HalfArgsAndReturns, 1, 0, "Allow function arguments and returns of type half")
 LANGOPT(CUDA              , 1, 0, "CUDA")
 LANGOPT(OpenMP            , 1, 0, "OpenMP support")
 
Index: include/clang/Driver/CC1Options.td
===================================================================
--- include/clang/Driver/CC1Options.td
+++ include/clang/Driver/CC1Options.td
@@ -486,6 +486,8 @@
   HelpText<"Control vtordisp placement on win32 targets">;
 def fno_rtti_data : Flag<["-"], "fno-rtti-data">,
   HelpText<"Control emission of RTTI data">;
+def fallow_half_arguments_and_returns : Flag<["-"], "fallow-half-arguments-and-returns">,
+  HelpText<"Allow function arguments and returns of type half">;
 
 //===----------------------------------------------------------------------===//
 // Header Search Options
Index: lib/CodeGen/CGCall.cpp
===================================================================
--- lib/CodeGen/CGCall.cpp
+++ lib/CodeGen/CGCall.cpp
@@ -512,11 +512,12 @@
   // default now.
   ABIArgInfo &retInfo = FI->getReturnInfo();
   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
-    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
+    retInfo.setCoerceToType(ConvertType(FI->getReturnType(), /* isFunctionArgOrReturn */ true));
 
   for (auto &I : FI->arguments())
     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
-      I.info.setCoerceToType(ConvertType(I.type));
+      I.info.setCoerceToType(
+          ConvertType(I.type, /* isFunctionArgOrReturn */ true));
 
   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
   assert(erased && "Not in set?");
Index: lib/CodeGen/CGExprScalar.cpp
===================================================================
--- lib/CodeGen/CGExprScalar.cpp
+++ lib/CodeGen/CGExprScalar.cpp
@@ -799,8 +799,17 @@
   }
 
   if (DstTy != ResTy) {
-    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
-    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
+    if (ResTy->isIntegerTy(16)) {
+      Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
+    } else if (ResTy->isHalfTy()) {
+      // This is required for ARM, where half is a storage and interchange
+      // format only, but may appear in the IR in order to get the calling
+      // convention correct.
+      Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
+      Res = Builder.CreateBitCast(Res, ResTy);
+    } else {
+      llvm_unreachable("Only half FP requires extra conversion");
+    }
   }
 
   return Res;
Index: lib/CodeGen/CodeGenTypes.cpp
===================================================================
--- lib/CodeGen/CodeGenTypes.cpp
+++ lib/CodeGen/CodeGenTypes.cpp
@@ -288,7 +288,7 @@
 }
 
 /// ConvertType - Convert the specified type to its LLVM form.
-llvm::Type *CodeGenTypes::ConvertType(QualType T) {
+llvm::Type *CodeGenTypes::ConvertType(QualType T, bool isFunctionArgOrReturn) {
   T = Context.getCanonicalType(T);
 
   const Type *Ty = T.getTypePtr();
@@ -351,12 +351,18 @@
                                  static_cast<unsigned>(Context.getTypeSize(T)));
       break;
 
-    case BuiltinType::Half:
-      // Half FP can either be storage-only (lowered to i16) or native.
-      ResultType = getTypeForFormat(getLLVMContext(),
-          Context.getFloatTypeSemantics(T),
-          Context.getLangOpts().NativeHalfType);
+    case BuiltinType::Half: {
+      // Half FP can either be storage-only (lowered to i16) or native. However,
+      // the ARM C Language Extensions specify that __fp16 can be used as a
+      // function argument or return, so we need to emit IR which uses the half
+      // type so that the backend can get the calling convention correct.
+      ResultType =
+          getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
+                           Context.getLangOpts().NativeHalfType ||
+                               (Context.getLangOpts().HalfArgsAndReturns &&
+                                isFunctionArgOrReturn));
       break;
+    }
     case BuiltinType::Float:
     case BuiltinType::Double:
     case BuiltinType::LongDouble:
@@ -398,7 +404,8 @@
   case Type::Auto:
     llvm_unreachable("Unexpected undeduced auto type!");
   case Type::Complex: {
-    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
+    llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType(),
+                                    isFunctionArgOrReturn);
     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
     break;
   }
@@ -462,8 +469,9 @@
   case Type::ExtVector:
   case Type::Vector: {
     const VectorType *VT = cast<VectorType>(Ty);
-    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
-                                       VT->getNumElements());
+    ResultType = llvm::VectorType::get(
+        ConvertType(VT->getElementType(), false),
+        VT->getNumElements());
     break;
   }
   case Type::FunctionNoProto:
@@ -537,7 +545,8 @@
   }
 
   case Type::ObjCObject:
-    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
+    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType(),
+                             isFunctionArgOrReturn);
     break;
 
   case Type::ObjCInterface: {
@@ -564,7 +573,7 @@
   case Type::Enum: {
     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
     if (ED->isCompleteDefinition() || ED->isFixed())
-      return ConvertType(ED->getIntegerType());
+      return ConvertType(ED->getIntegerType(), isFunctionArgOrReturn);
     // Return a placeholder 'i32' type.  This can be changed later when the
     // type is defined (see UpdateCompletedType), but is likely to be the
     // "right" answer.
Index: lib/CodeGen/CodeGenTypes.h
===================================================================
--- lib/CodeGen/CodeGenTypes.h
+++ lib/CodeGen/CodeGenTypes.h
@@ -118,8 +118,8 @@
   CGCXXABI &getCXXABI() const { return TheCXXABI; }
   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
 
-  /// ConvertType - Convert type T into a llvm::Type.
-  llvm::Type *ConvertType(QualType T);
+  /// ConvertType - Convert type T into an llvm::Type.
+  llvm::Type *ConvertType(QualType T, bool isFunctionArgOrReturn = false);
 
   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
   /// ConvertType in that it is used to convert to the memory representation for
Index: lib/CodeGen/TargetInfo.cpp
===================================================================
--- lib/CodeGen/TargetInfo.cpp
+++ lib/CodeGen/TargetInfo.cpp
@@ -3233,6 +3233,7 @@
 
 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
                                    ASTContext &Context,
+                                   bool isAArch64,
                                    uint64_t *HAMembers = nullptr);
 
 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty,
@@ -3314,7 +3315,7 @@
   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
   const Type *Base = nullptr;
   uint64_t Members = 0;
-  if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
+  if (isHomogeneousAggregate(Ty, Base, getContext(), true, &Members)) {
     IsHA = true;
     if (!IsNamedArg && isDarwinPCS()) {
       // With the Darwin ABI, variadic arguments are always passed on the stack
@@ -3372,7 +3373,7 @@
     return ABIArgInfo::getIgnore();
 
   const Type *Base = nullptr;
-  if (isHomogeneousAggregate(RetTy, Base, getContext()))
+  if (isHomogeneousAggregate(RetTy, Base, getContext(), true))
     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
     return ABIArgInfo::getDirect();
 
@@ -3509,7 +3510,7 @@
 
   const Type *Base = nullptr;
   uint64_t NumMembers;
-  bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, &NumMembers);
+  bool IsHFA = isHomogeneousAggregate(Ty, Base, Ctx, true, &NumMembers);
   if (IsHFA && NumMembers > 1) {
     // Homogeneous aggregates passed in registers will have their elements split
     // and stored 16-bytes apart regardless of size (they're notionally in qN,
@@ -3652,7 +3653,7 @@
   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
 
   const Type *Base = nullptr;
-  bool isHA = isHomogeneousAggregate(Ty, Base, getContext());
+  bool isHA = isHomogeneousAggregate(Ty, Base, getContext(), true);
 
   bool isIndirect = false;
   // Arguments bigger than 16 bytes which aren't homogeneous aggregates should
@@ -3936,10 +3937,11 @@
 /// contained in the type is returned through it; this is used for the
 /// recursive calls that check aggregate component types.
 static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
-                                   ASTContext &Context, uint64_t *HAMembers) {
+                                   ASTContext &Context, bool isAArch64,
+                                   uint64_t *HAMembers) {
   uint64_t Members = 0;
   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
-    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
+    if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, isAArch64, &Members))
       return false;
     Members *= AT->getSize().getZExtValue();
   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
@@ -3950,7 +3952,7 @@
     Members = 0;
     for (const auto *FD : RD->fields()) {
       uint64_t FldMembers;
-      if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
+      if (!isHomogeneousAggregate(FD->getType(), Base, Context, isAArch64, &FldMembers))
         return false;
 
       Members = (RD->isUnion() ?
@@ -3964,12 +3966,22 @@
     }
 
     // Homogeneous aggregates for AAPCS-VFP must have base types of float,
-    // double, or 64-bit or 128-bit vectors.
+    // double, or 64-bit or 128-bit vectors. "long double" has the same machine
+    // type as double, so it is also allowed as a base type.
+    // Homogeneous aggregates for AAPCS64 must have base types of a floating
+    // point type or a short-vector type. This is the same as the 32-bit ABI,
+    // but with the difference that any floating-point type is allowed,
+    // including __fp16.
     if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
-      if (BT->getKind() != BuiltinType::Float && 
-          BT->getKind() != BuiltinType::Double &&
-          BT->getKind() != BuiltinType::LongDouble)
-        return false;
+      if (isAArch64) {
+        if (!BT->isFloatingPoint())
+          return false;
+      } else {
+        if (BT->getKind() != BuiltinType::Float &&
+            BT->getKind() != BuiltinType::Double &&
+            BT->getKind() != BuiltinType::LongDouble)
+          return false;
+      }
     } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
       unsigned VecSize = Context.getTypeSize(VT);
       if (VecSize != 64 && VecSize != 128)
@@ -4167,7 +4179,7 @@
     // into VFP registers.
     const Type *Base = nullptr;
     uint64_t Members = 0;
-    if (isHomogeneousAggregate(Ty, Base, getContext(), &Members)) {
+    if (isHomogeneousAggregate(Ty, Base, getContext(), false, &Members)) {
       assert(Base && "Base class should be set for homogeneous aggregate");
       // Base can be a floating-point or a vector.
       if (Base->isVectorType()) {
@@ -4368,7 +4380,7 @@
   // Check for homogeneous aggregates with AAPCS-VFP.
   if (getABIKind() == AAPCS_VFP && !isVariadic) {
     const Type *Base = nullptr;
-    if (isHomogeneousAggregate(RetTy, Base, getContext())) {
+    if (isHomogeneousAggregate(RetTy, Base, getContext(), false)) {
       assert(Base && "Base class should be set for homogeneous aggregate");
       // Homogeneous Aggregates are returned directly.
       return ABIArgInfo::getDirect();
Index: lib/Driver/Tools.cpp
===================================================================
--- lib/Driver/Tools.cpp
+++ lib/Driver/Tools.cpp
@@ -3481,6 +3481,12 @@
     }
   }
 
+  if (getToolChain().getTriple().getArch() == llvm::Triple::aarch64 ||
+      getToolChain().getTriple().getArch() == llvm::Triple::aarch64_be ||
+      getToolChain().getTriple().getArch() == llvm::Triple::arm64 ||
+      getToolChain().getTriple().getArch() == llvm::Triple::arm64_be)
+    CmdArgs.push_back("-fallow-half-arguments-and-returns");
+
   if (Arg *A = Args.getLastArg(options::OPT_mrestrict_it,
                                options::OPT_mno_restrict_it)) {
     if (A->getOption().matches(options::OPT_mrestrict_it)) {
Index: lib/Frontend/CompilerInvocation.cpp
===================================================================
--- lib/Frontend/CompilerInvocation.cpp
+++ lib/Frontend/CompilerInvocation.cpp
@@ -1512,6 +1512,7 @@
   Opts.DebuggerObjCLiteral = Args.hasArg(OPT_fdebugger_objc_literal);
   Opts.ApplePragmaPack = Args.hasArg(OPT_fapple_pragma_pack);
   Opts.CurrentModule = Args.getLastArgValue(OPT_fmodule_name);
+  Opts.HalfArgsAndReturns = Args.hasArg(OPT_fallow_half_arguments_and_returns);
 
   if (Arg *A = Args.getLastArg(OPT_faddress_space_map_mangling_EQ)) {
     switch (llvm::StringSwitch<unsigned>(A->getValue())
Index: lib/Sema/SemaType.cpp
===================================================================
--- lib/Sema/SemaType.cpp
+++ lib/Sema/SemaType.cpp
@@ -1746,7 +1746,7 @@
   }
 
   // Functions cannot return half FP.
-  if (T->isHalfType()) {
+  if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
       FixItHint::CreateInsertion(Loc, "*");
     return true;
@@ -1776,7 +1776,7 @@
     if (ParamType->isVoidType()) {
       Diag(Loc, diag::err_param_with_void_type);
       Invalid = true;
-    } else if (ParamType->isHalfType()) {
+    } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
       // Disallow half FP arguments.
       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
         FixItHint::CreateInsertion(Loc, "*");
@@ -2749,7 +2749,7 @@
             S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
             D.setInvalidType(true);
           } 
-        } else {
+        } else if (!S.getLangOpts().HalfArgsAndReturns) {
           S.Diag(D.getIdentifierLoc(),
             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
           D.setInvalidType(true);
@@ -2939,7 +2939,7 @@
                 D.setInvalidType();
                 Param->setInvalidDecl();
               }
-            } else {
+            } else if (!S.getLangOpts().HalfArgsAndReturns) {
               S.Diag(Param->getLocation(),
                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
               D.setInvalidType();
Index: test/CodeGen/arm64-aapcs-arguments.c
===================================================================
--- test/CodeGen/arm64-aapcs-arguments.c
+++ test/CodeGen/arm64-aapcs-arguments.c
@@ -1,4 +1,4 @@
-// RUN: %clang_cc1 -triple arm64-linux-gnu -target-feature +neon -target-abi aapcs -ffreestanding -emit-llvm -w -o - %s | FileCheck %s
+// RUN: %clang_cc1 -triple aarch64-linux-gnu -target-feature +neon -target-abi aapcs -ffreestanding -fallow-half-arguments-and-returns -emit-llvm -w -o - %s | FileCheck %s
 
 // AAPCS clause C.8 says: If the argument has an alignment of 16 then the NGRN
 // is rounded up to the next even number.
@@ -40,3 +40,12 @@
 // CHECK: define i8 @test5(i8 %a, i16 %b)
 unsigned char test5(unsigned char a, signed short b) {
 }
+
+// __fp16 can be used as a function argument or return type (ACLE 2.0)
+// CHECK: define half @test_half(half %{{.*}})
+__fp16 test_half(__fp16 A) { }
+
+// __fp16 is a base type for homogeneous floating-point aggregates for AArch64 (but not 32-bit ARM).
+// CHECK: define %struct.HFA_half @test_half_hfa(half %{{.*}}, half %{{.*}}, half %{{.*}}, half %{{.*}})
+struct HFA_half { __fp16 a[4]; };
+struct HFA_half test_half_hfa(struct HFA_half A) { }
_______________________________________________
cfe-commits mailing list
[email protected]
http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits

Reply via email to