Hi, this change broke MSan bot. http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/3242
IncompleteUsedCount is never initialized. On Fri, May 2, 2014 at 1:33 PM, Robert Lytton <[email protected]> wrote: > Author: rlytton > Date: Fri May 2 04:33:20 2014 > New Revision: 207832 > > URL: http://llvm.org/viewvc/llvm-project?rev=207832&view=rev > Log: > XCore target: Add TypeString meta data to IR output. > > This includes the addition of the virtual function: > TargetCodeGenInfo::EmitTargetMD() > > Added: > cfe/trunk/test/CodeGen/xcore-stringtype.c > Modified: > cfe/trunk/lib/CodeGen/CodeGenModule.cpp > cfe/trunk/lib/CodeGen/TargetInfo.cpp > cfe/trunk/lib/CodeGen/TargetInfo.h > > Modified: cfe/trunk/lib/CodeGen/CodeGenModule.cpp > URL: > http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/CodeGenModule.cpp?rev=207832&r1=207831&r2=207832&view=diff > ============================================================================== > --- cfe/trunk/lib/CodeGen/CodeGenModule.cpp (original) > +++ cfe/trunk/lib/CodeGen/CodeGenModule.cpp Fri May 2 04:33:20 2014 > @@ -1463,6 +1463,8 @@ CodeGenModule::GetOrCreateLLVMFunction(S > } > } > > + getTargetCodeGenInfo().emitTargetMD(D, F, *this); > + > // Make sure the result is of the requested type. > if (!IsIncompleteFunction) { > assert(F->getType()->getElementType() == Ty); > @@ -1616,6 +1618,8 @@ CodeGenModule::GetOrCreateLLVMGlobal(Str > isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) > GV->setSection(".cp.rodata"); > > + getTargetCodeGenInfo().emitTargetMD(D, GV, *this); > + > return GV; > } > > > Modified: cfe/trunk/lib/CodeGen/TargetInfo.cpp > URL: > http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.cpp?rev=207832&r1=207831&r2=207832&view=diff > ============================================================================== > --- cfe/trunk/lib/CodeGen/TargetInfo.cpp (original) > +++ cfe/trunk/lib/CodeGen/TargetInfo.cpp Fri May 2 04:33:20 2014 > @@ -23,6 +23,9 @@ > #include "llvm/IR/DataLayout.h" > #include "llvm/IR/Type.h" > #include "llvm/Support/raw_ostream.h" > + > +#include <algorithm> // std::sort > + > using namespace clang; > using namespace CodeGen; > > @@ -6105,7 +6108,100 @@ SparcV9TargetCodeGenInfo::initDwarfEHReg > > //===----------------------------------------------------------------------===// > // XCore ABI Implementation > > //===----------------------------------------------------------------------===// > + > namespace { > + > +/// A SmallStringEnc instance is used to build up the TypeString by passing > +/// it by reference between functions that append to it. > +typedef llvm::SmallString<128> SmallStringEnc; > + > +/// TypeStringCache caches the meta encodings of Types. > +/// > +/// The reason for caching TypeStrings is two fold: > +/// 1. To cache a type's encoding for later uses; > +/// 2. As a means to break recursive member type inclusion. > +/// > +/// A cache Entry can have a Status of: > +/// NonRecursive: The type encoding is not recursive; > +/// Recursive: The type encoding is recursive; > +/// Incomplete: An incomplete TypeString; > +/// IncompleteUsed: An incomplete TypeString that has been used in a > +/// Recursive type encoding. > +/// > +/// A NonRecursive entry will have all of its sub-members expanded as fully > +/// as possible. Whilst it may contain types which are recursive, the type > +/// itself is not recursive and thus its encoding may be safely used whenever > +/// the type is encountered. > +/// > +/// A Recursive entry will have all of its sub-members expanded as fully as > +/// possible. The type itself is recursive and it may contain other types > which > +/// are recursive. The Recursive encoding must not be used during the > expansion > +/// of a recursive type's recursive branch. For simplicity the code uses > +/// IncompleteCount to reject all usage of Recursive encodings for member > types. > +/// > +/// An Incomplete entry is always a RecordType and only encodes its > +/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and > +/// are placed into the cache during type expansion as a means to identify > and > +/// handle recursive inclusion of types as sub-members. If there is recursion > +/// the entry becomes IncompleteUsed. > +/// > +/// During the expansion of a RecordType's members: > +/// > +/// If the cache contains a NonRecursive encoding for the member type, the > +/// cached encoding is used; > +/// > +/// If the cache contains a Recursive encoding for the member type, the > +/// cached encoding is 'Swapped' out, as it may be incorrect, and... > +/// > +/// If the member is a RecordType, an Incomplete encoding is placed into > the > +/// cache to break potential recursive inclusion of itself as a sub-member; > +/// > +/// Once a member RecordType has been expanded, its temporary incomplete > +/// entry is removed from the cache. If a Recursive encoding was swapped > out > +/// it is swapped back in; > +/// > +/// If an incomplete entry is used to expand a sub-member, the incomplete > +/// entry is marked as IncompleteUsed. The cache keeps count of how many > +/// IncompleteUsed entries it currently contains in IncompleteUsedCount; > +/// > +/// If a member's encoding is found to be a NonRecursive or Recursive viz: > +/// IncompleteUsedCount==0, the member's encoding is added to the cache. > +/// Else the member is part of a recursive type and thus the recursion has > +/// been exited too soon for the encoding to be correct for the member. > +/// > +class TypeStringCache { > + enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; > + struct Entry { > + std::string Str; // The encoded TypeString for the type. > + enum Status State; // Information about the encoding in 'Str'. > + std::string Swapped; // A temporary place holder for a Recursive encoding > + // during the expansion of RecordType's members. > + }; > + std::map<const IdentifierInfo *, struct Entry> Map; > + unsigned IncompleteCount; // Number of Incomplete entries in the Map. > + unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the > Map. > +public: > + void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); > + bool removeIncomplete(const IdentifierInfo *ID); > + void addIfComplete(const IdentifierInfo *ID, StringRef Str, > + bool IsRecursive); > + StringRef lookupStr(const IdentifierInfo *ID); > +}; > + > +/// TypeString encodings for union fields must be order. > +/// FieldEncoding is a helper for this ordering process. > +class FieldEncoding { > + bool HasName; > + std::string Enc; > +public: > + FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}; > + StringRef str() {return Enc.c_str();}; > + bool operator<(const FieldEncoding &rhs) const { > + if (HasName != rhs.HasName) return HasName; > + return Enc < rhs.Enc; > + } > +}; > + > class XCoreABIInfo : public DefaultABIInfo { > public: > XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} > @@ -6114,10 +6210,14 @@ public: > }; > > class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { > + mutable TypeStringCache TSC; > public: > XCoreTargetCodeGenInfo(CodeGenTypes &CGT) > :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} > + virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, > + CodeGen::CodeGenModule &M) const; > }; > + > } // End anonymous namespace. > > llvm::Value *XCoreABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, > @@ -6169,6 +6269,448 @@ llvm::Value *XCoreABIInfo::EmitVAArg(llv > return Val; > } > > +/// During the expansion of a RecordType, an incomplete TypeString is placed > +/// into the cache as a means to identify and break recursion. > +/// If there is a Recursive encoding in the cache, it is swapped out and will > +/// be reinserted by removeIncomplete(). > +/// All other types of encoding should have been used rather than arriving > here. > +void TypeStringCache::addIncomplete(const IdentifierInfo *ID, > + std::string StubEnc) { > + if (!ID) > + return; > + Entry &E = Map[ID]; > + assert( (E.Str.empty() || E.State == Recursive) && > + "Incorrectly use of addIncomplete"); > + assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); > + E.Swapped.swap(E.Str); // swap out the Recursive > + E.Str.swap(StubEnc); > + E.State = Incomplete; > + ++IncompleteCount; > +} > + > +/// Once the RecordType has been expanded, the temporary incomplete > TypeString > +/// must be removed from the cache. > +/// If a Recursive was swapped out by addIncomplete(), it will be replaced. > +/// Returns true if the RecordType was defined recursively. > +bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { > + if (!ID) > + return false; > + auto I = Map.find(ID); > + assert(I != Map.end() && "Entry not present"); > + Entry &E = I->second; > + assert( (E.State == Incomplete || > + E.State == IncompleteUsed) && > + "Entry must be an incomplete type"); > + bool IsRecursive = false; > + if (E.State == IncompleteUsed) { > + // We made use of our Incomplete encoding, thus we are recursive. > + IsRecursive = true; > + --IncompleteUsedCount; > + } > + if (E.Swapped.empty()) > + Map.erase(I); > + else { > + // Swap the Recursive back. > + E.Swapped.swap(E.Str); > + E.Swapped.clear(); > + E.State = Recursive; > + } > + --IncompleteCount; > + return IsRecursive; > +} > + > +/// Add the encoded TypeString to the cache only if it is NonRecursive or > +/// Recursive (viz: all sub-members were expanded as fully as possible). > +void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, > + bool IsRecursive) { > + if (!ID || IncompleteUsedCount) > + return; // No key or it is is an incomplete sub-type so don't add. > + Entry &E = Map[ID]; > + if (IsRecursive && !E.Str.empty()) { > + assert(E.State==Recursive && E.Str.size() == Str.size() && > + "This is not the same Recursive entry"); > + // The parent container was not recursive after all, so we could have > used > + // this Recursive sub-member entry after all, but we assumed the worse > when > + // we started viz: IncompleteCount!=0. > + return; > + } > + assert(E.Str.empty() && "Entry already present"); > + E.Str = Str.str(); > + E.State = IsRecursive? Recursive : NonRecursive; > +} > + > +/// Return a cached TypeString encoding for the ID. If there isn't one, or we > +/// are recursively expanding a type (IncompleteCount != 0) and the cached > +/// encoding is Recursive, return an empty StringRef. > +StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { > + if (!ID) > + return StringRef(); // We have no key. > + auto I = Map.find(ID); > + if (I == Map.end()) > + return StringRef(); // We have no encoding. > + Entry &E = I->second; > + if (E.State == Recursive && IncompleteCount) > + return StringRef(); // We don't use Recursive encodings for member > types. > + > + if (E.State == Incomplete) { > + // The incomplete type is being used to break out of recursion. > + E.State = IncompleteUsed; > + ++IncompleteUsedCount; > + } > + return E.Str.c_str(); > +} > + > +/// The XCore ABI includes a type information section that communicates > symbol > +/// type information to the linker. The linker uses this information to > verify > +/// safety/correctness of things such as array bound and pointers et al. > +/// The ABI only requires C (and XC) language modules to emit TypeStrings. > +/// This type information (TypeString) is emitted into meta data for all > global > +/// symbols: definitions, declarations, functions & variables. > +/// > +/// The TypeString carries type, qualifier, name, size & value details. > +/// Please see 'Tools Development Guide' section 2.16.2 for format details: > +/// > <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> > +/// The output is tested by test/CodeGen/xcore-stringtype.c. > +/// > +static bool getTypeString(SmallStringEnc &Enc, const Decl *D, > + CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); > + > +/// XCore uses emitTargetMD to emit TypeString metadata for global symbols. > +void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue > *GV, > + CodeGen::CodeGenModule &CGM) const > { > + SmallStringEnc Enc; > + if (getTypeString(Enc, D, CGM, TSC)) { > + llvm::LLVMContext &Ctx = CGM.getModule().getContext(); > + llvm::SmallVector<llvm::Value *, 2> MDVals; > + MDVals.push_back(GV); > + MDVals.push_back(llvm::MDString::get(Ctx, Enc.str())); > + llvm::NamedMDNode *MD = > + CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); > + MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); > + } > +} > + > +static bool appendType(SmallStringEnc &Enc, QualType QType, > + const CodeGen::CodeGenModule &CGM, > + TypeStringCache &TSC); > + > +/// Helper function for appendRecordType(). > +/// Builds a SmallVector containing the encoded field types in declaration > order. > +static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, > + const RecordDecl *RD, > + const CodeGen::CodeGenModule &CGM, > + TypeStringCache &TSC) { > + for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); > + I != E; ++I) { > + SmallStringEnc Enc; > + Enc += "m("; > + Enc += I->getName(); > + Enc += "){"; > + if (I->isBitField()) { > + Enc += "b("; > + llvm::raw_svector_ostream OS(Enc); > + OS.resync(); > + OS << I->getBitWidthValue(CGM.getContext()); > + OS.flush(); > + Enc += ':'; > + } > + if (!appendType(Enc, I->getType(), CGM, TSC)) > + return false; > + if (I->isBitField()) > + Enc += ')'; > + Enc += '}'; > + FE.push_back(FieldEncoding(!I->getName().empty(), Enc)); > + } > + return true; > +} > + > +/// Appends structure and union types to Enc and adds encoding to cache. > +/// Recursively calls appendType (via extractFieldType) for each field. > +/// Union types have their fields ordered according to the ABI. > +static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, > + const CodeGen::CodeGenModule &CGM, > + TypeStringCache &TSC, const IdentifierInfo *ID) > { > + // Append the cached TypeString if we have one. > + StringRef TypeString = TSC.lookupStr(ID); > + if (!TypeString.empty()) { > + Enc += TypeString; > + return true; > + } > + > + // Start to emit an incomplete TypeString. > + size_t Start = Enc.size(); > + Enc += (RT->isUnionType()? 'u' : 's'); > + Enc += '('; > + if (ID) > + Enc += ID->getName(); > + Enc += "){"; > + > + // We collect all encoded fields and order as necessary. > + bool IsRecursive = false; > + SmallVector<FieldEncoding, 16> FE; > + const RecordDecl *RD = RT->getDecl()->getDefinition(); > + if (RD && !RD->field_empty()) { > + // An incomplete TypeString stub is placed in the cache for this > RecordType > + // so that recursive calls to this RecordType will use it whilst > building a > + // complete TypeString for this RecordType. > + std::string StubEnc(Enc.substr(Start).str()); > + StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. > + TSC.addIncomplete(ID, std::move(StubEnc)); > + if (!extractFieldType(FE, RD, CGM, TSC)) { > + (void) TSC.removeIncomplete(ID); > + return false; > + } > + IsRecursive = TSC.removeIncomplete(ID); > + // The ABI requires unions to be sorted but not structures. > + // See FieldEncoding::operator< for sort algorithm. > + if (RT->isUnionType()) > + std::sort(FE.begin(), FE.end()); > + } > + > + // We can now complete the TypeString. > + if (unsigned E = FE.size()) > + for (unsigned I = 0; I != E; ++I) { > + if (I) > + Enc += ','; > + Enc += FE[I].str(); > + } > + Enc += '}'; > + TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); > + return true; > +} > + > +/// Appends enum types to Enc and adds the encoding to the cache. > +static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, > + TypeStringCache &TSC, > + const IdentifierInfo *ID) { > + // Append the cached TypeString if we have one. > + StringRef TypeString = TSC.lookupStr(ID); > + if (!TypeString.empty()) { > + Enc += TypeString; > + return true; > + } > + > + size_t Start = Enc.size(); > + Enc += "e("; > + if (ID) > + Enc += ID->getName(); > + Enc += "){"; > + if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { > + auto I = ED->enumerator_begin(); > + auto E = ED->enumerator_end(); > + while (I != E) { > + Enc += "m("; > + Enc += I->getName(); > + Enc += "){"; > + I->getInitVal().toString(Enc); > + Enc += '}'; > + ++I; > + if (I != E) > + Enc += ','; > + } > + } > + Enc += '}'; > + TSC.addIfComplete(ID, Enc.substr(Start), false); > + return true; > +} > + > +/// Appends type's qualifier to Enc. > +/// This is done prior to appending the type's encoding. > +static void appendQualifier(SmallStringEnc &Enc, QualType QT) { > + // Qualifiers are emitted in alphabetical order. > + static const char *Table[] = {"","c:","r:","cr:","v:","cv:","rv:","crv:"}; > + int Lookup = 0; > + if (QT.isConstQualified()) > + Lookup += 1<<0; > + if (QT.isRestrictQualified()) > + Lookup += 1<<1; > + if (QT.isVolatileQualified()) > + Lookup += 1<<2; > + Enc += Table[Lookup]; > +} > + > +/// Appends built-in types to Enc. > +static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { > + const char *EncType; > + switch (BT->getKind()) { > + case BuiltinType::Void: > + EncType = "0"; > + break; > + case BuiltinType::Bool: > + EncType = "b"; > + break; > + case BuiltinType::Char_U: > + EncType = "uc"; > + break; > + case BuiltinType::UChar: > + EncType = "uc"; > + break; > + case BuiltinType::SChar: > + EncType = "sc"; > + break; > + case BuiltinType::UShort: > + EncType = "us"; > + break; > + case BuiltinType::Short: > + EncType = "ss"; > + break; > + case BuiltinType::UInt: > + EncType = "ui"; > + break; > + case BuiltinType::Int: > + EncType = "si"; > + break; > + case BuiltinType::ULong: > + EncType = "ul"; > + break; > + case BuiltinType::Long: > + EncType = "sl"; > + break; > + case BuiltinType::ULongLong: > + EncType = "ull"; > + break; > + case BuiltinType::LongLong: > + EncType = "sll"; > + break; > + case BuiltinType::Float: > + EncType = "ft"; > + break; > + case BuiltinType::Double: > + EncType = "d"; > + break; > + case BuiltinType::LongDouble: > + EncType = "ld"; > + break; > + default: > + return false; > + } > + Enc += EncType; > + return true; > +} > + > +/// Appends a pointer encoding to Enc before calling appendType for the > pointee. > +static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, > + const CodeGen::CodeGenModule &CGM, > + TypeStringCache &TSC) { > + Enc += "p("; > + if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) > + return false; > + Enc += ')'; > + return true; > +} > + > +/// Appends array encoding to Enc before calling appendType for the element. > +static bool appendArrayType(SmallStringEnc &Enc, const ArrayType *AT, > + const CodeGen::CodeGenModule &CGM, > + TypeStringCache &TSC, StringRef NoSizeEnc) { > + if (AT->getSizeModifier() != ArrayType::Normal) > + return false; > + Enc += "a("; > + if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) > + CAT->getSize().toStringUnsigned(Enc); > + else > + Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". > + Enc += ':'; > + if (!appendType(Enc, AT->getElementType(), CGM, TSC)) > + return false; > + Enc += ')'; > + return true; > +} > + > +/// Appends a function encoding to Enc, calling appendType for the return > type > +/// and the arguments. > +static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, > + const CodeGen::CodeGenModule &CGM, > + TypeStringCache &TSC) { > + Enc += "f{"; > + if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) > + return false; > + Enc += "}("; > + if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { > + // N.B. we are only interested in the adjusted param types. > + auto I = FPT->param_type_begin(); > + auto E = FPT->param_type_end(); > + if (I != E) { > + do { > + if (!appendType(Enc, *I, CGM, TSC)) > + return false; > + ++I; > + if (I != E) > + Enc += ','; > + } while (I != E); > + if (FPT->isVariadic()) > + Enc += ",va"; > + } else { > + if (FPT->isVariadic()) > + Enc += "va"; > + else > + Enc += '0'; > + } > + } > + Enc += ')'; > + return true; > +} > + > +/// Handles the type's qualifier before dispatching a call to handle specific > +/// type encodings. > +static bool appendType(SmallStringEnc &Enc, QualType QType, > + const CodeGen::CodeGenModule &CGM, > + TypeStringCache &TSC) { > + > + QualType QT = QType.getCanonicalType(); > + > + appendQualifier(Enc, QT); > + > + if (const BuiltinType *BT = QT->getAs<BuiltinType>()) > + return appendBuiltinType(Enc, BT); > + > + if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) > + return appendArrayType(Enc, AT, CGM, TSC, ""); > + > + if (const PointerType *PT = QT->getAs<PointerType>()) > + return appendPointerType(Enc, PT, CGM, TSC); > + > + if (const EnumType *ET = QT->getAs<EnumType>()) > + return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); > + > + if (const RecordType *RT = QT->getAsStructureType()) > + return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); > + > + if (const RecordType *RT = QT->getAsUnionType()) > + return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); > + > + if (const FunctionType *FT = QT->getAs<FunctionType>()) > + return appendFunctionType(Enc, FT, CGM, TSC); > + > + return false; > +} > + > +static bool getTypeString(SmallStringEnc &Enc, const Decl *D, > + CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) > { > + if (!D) > + return false; > + > + if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { > + if (FD->getLanguageLinkage() != CLanguageLinkage) > + return false; > + return appendType(Enc, FD->getType(), CGM, TSC); > + } > + > + if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { > + if (VD->getLanguageLinkage() != CLanguageLinkage) > + return false; > + QualType QT = VD->getType().getCanonicalType(); > + if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { > + // Global ArrayTypes are given a size of '*' if the size is unknown. > + appendQualifier(Enc, QT); > + return appendArrayType(Enc, AT, CGM, TSC, "*"); > + } > + return appendType(Enc, QT, CGM, TSC); > + } > + return false; > +} > + > + > > //===----------------------------------------------------------------------===// > // Driver code > > //===----------------------------------------------------------------------===// > > Modified: cfe/trunk/lib/CodeGen/TargetInfo.h > URL: > http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/TargetInfo.h?rev=207832&r1=207831&r2=207832&view=diff > ============================================================================== > --- cfe/trunk/lib/CodeGen/TargetInfo.h (original) > +++ cfe/trunk/lib/CodeGen/TargetInfo.h Fri May 2 04:33:20 2014 > @@ -56,6 +56,11 @@ namespace clang { > virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV, > CodeGen::CodeGenModule &M) const { } > > + /// EmitTargetMD - Provides a convenient hook to handle extra > + /// target-specific metadata for the given global. > + virtual void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, > + CodeGen::CodeGenModule &M) const { } > + > /// Determines the size of struct _Unwind_Exception on this platform, > /// in 8-bit units. The Itanium ABI defines this as: > /// struct _Unwind_Exception { > > Added: cfe/trunk/test/CodeGen/xcore-stringtype.c > URL: > http://llvm.org/viewvc/llvm-project/cfe/trunk/test/CodeGen/xcore-stringtype.c?rev=207832&view=auto > ============================================================================== > --- cfe/trunk/test/CodeGen/xcore-stringtype.c (added) > +++ cfe/trunk/test/CodeGen/xcore-stringtype.c Fri May 2 04:33:20 2014 > @@ -0,0 +1,169 @@ > +// REQUIRES: xcore-registered-target > +// RUN: %clang_cc1 -triple xcore-unknown-unknown -fno-signed-char > -fno-common -emit-llvm -o - %s | FileCheck %s > + > +// CHECK: target triple = "xcore-unknown-unknown" > + > +// In the tests below, some types are not supported by the ABI (_Complex, > +// variable length arrays) and will thus emit no meta data. > +// The 33 tests that do emit typstrings are gathered into > '!xcore.typestrings' > +// Please see 'Tools Developement Guide' section 2.16.2 for format details: > +// > <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf> > + > +// CHECK: !xcore.typestrings = !{!0, !1, !2, !3, !4, !5, !6, !7, !8, !9, !10, > +// CHECK: !11, !12, !13, !14, !15, !16, !17, !18, !19, !20, !21, !22, !23, > +// CHECK: !24, !25, !26, !27, !28, !29, !30, !31, !32, !33, !34} > + > + > +// test BuiltinType > +// CHECK: !0 = metadata !{void (i1, i8, i8, i8, i16, i16, i16, i32, i32, i32, > +// CHECK: i32, i32, i32, i64, i64, i64, float, double, double)* > +// CHECK: @builtinType, metadata !"f{0}(b,uc,uc,sc,ss,us,ss,si,ui,si,sl, > +// CHECK: ul,sl,sll,ull,sll,ft,d,ld)"} > +void builtinType(_Bool B, char C, unsigned char UC, signed char SC, short S, > + unsigned short US, signed short SS, int I, unsigned int UI, > + signed int SI, long L, unsigned long UL, signed long SL, > + long long LL, unsigned long long ULL, signed long long SLL, > + float F, double D, long double LD) {} > +double _Complex Complex; // not supported > + > + > +// test FunctionType & Qualifiers > +// CHECK: !1 = metadata !{void ()* @gI, metadata !"f{0}()"} > +// CHECK: !2 = metadata !{void (...)* @eI, metadata !"f{0}()"} > +// CHECK: !3 = metadata !{void ()* @gV, metadata !"f{0}(0)"} > +// CHECK: !4 = metadata !{void ()* @eV, metadata !"f{0}(0)"} > +// CHECK: !5 = metadata !{void (i32, ...)* @gVA, metadata !"f{0}(si,va)"} > +// CHECK: !6 = metadata !{void (i32, ...)* @eVA, metadata !"f{0}(si,va)"} > +// CHECK: !7 = metadata !{i32* (i32*)* @gQ, metadata > !"f{crv:p(cv:si)}(p(cv:si))"} > +// CHECK: !8 = metadata !{i32* (i32*)* @eQ, metadata > !"f{crv:p(cv:si)}(p(cv:si))"} > +extern void eI(); > +void gI() {eI();}; > +extern void eV(void); > +void gV(void) {eV();} > +extern void eVA(int, ...); > +void gVA(int i, ...) {eVA(i);} > +extern const volatile int* volatile restrict const > + eQ(const volatile int * volatile restrict const); > +const volatile int* volatile restrict const > + gQ(const volatile int * volatile restrict const i) {return eQ(i);} > + > + > +// test PointerType > +// CHECK: !9 = metadata !{i32* (i32*, i32* (i32*)*)* > +// CHECK: @pointerType, metadata !"f{p(si)}(p(si),p(f{p(si)}(p(si))))"} > +// CHECK: !10 = metadata !{i32** @EP, metadata !"p(si)"} > +// CHECK: !11 = metadata !{i32** @GP, metadata !"p(si)"} > +extern int* EP; > +int* GP; > +int* pointerType(int *I, int * (*FP)(int *)) { > + return I? EP : GP; > +} > + > + > +// test ArrayType > +// CHECK: !12 = metadata !{[2 x i32]* (i32*, i32*, [2 x i32]*, [2 x i32]*, > i32*)* > +// CHECK: @arrayType, metadata !"f{p(a(2:si))}(p(si),p(si),p(a(2:si)), > +// CHECK: p(a(2:si)),p(si))"} > +// CHECK: !13 = metadata !{[0 x i32]* @EA1, metadata !"a(*:si)"} > +// CHECK: !14 = metadata !{[2 x i32]* @EA2, metadata !"a(2:si)"} > +// CHECK: !15 = metadata !{[0 x [2 x i32]]* @EA3, metadata !"a(*:a(2:si))"} > +// CHECK: !16 = metadata !{[3 x [2 x i32]]* @EA4, metadata !"a(3:a(2:si))"} > +// CHECK: !17 = metadata !{[2 x i32]* @GA1, metadata !"a(2:si)"} > +// CHECK: !18 = metadata !{void ([2 x i32]*)* @arrayTypeVariable1, > +// CHECK: metadata !"f{0}(p(a(2:si)))"} > +// CHECK: !19 = metadata !{void (void ([2 x i32]*)*)* @arrayTypeVariable2, > +// CHECK: metadata !"f{0}(p(f{0}(p(a(2:si)))))"} > +// CHECK: !20 = metadata !{[3 x [2 x i32]]* @GA2, metadata !"a(3:a(2:si))"} > +extern int EA1[]; > +extern int EA2[2]; > +extern int EA3[][2]; > +extern int EA4[3][2]; > +int GA1[2]; > +int GA2[3][2]; > +extern void arrayTypeVariable1(int[*][2]); > +extern void arrayTypeVariable2( void(*fp)(int[*][2]) ); > +extern void arrayTypeVariable3(int[3][*]); // not supported > +extern void arrayTypeVariable4( void(*fp)(int[3][*]) ); // not supported > +typedef int RetType[2]; > +RetType* arrayType(int A1[], int A2[2], int A3[][2], int A4[3][2], > + int A5[const volatile restrict static 2]) { > + if (A1) return &EA1; > + if (A2) return &EA2; > + if (A3) return EA3; > + if (A4) return EA4; > + if (A5) return &GA1; > + arrayTypeVariable1(EA4); > + arrayTypeVariable2(arrayTypeVariable1); > + arrayTypeVariable3(EA4); > + arrayTypeVariable4(arrayTypeVariable3); > + return GA2; > +} > + > + > +// test StructureType > +// CHECK: !21 = metadata !{void (%struct.S1*)* @structureType1, metadata > +// CHECK: > !"f{0}(s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}})"} > +// CHECK: !22 = metadata !{void (%struct.S2*)* @structureType2, metadata > +// CHECK: > !"f{0}(s(S2){m(ps3){p(s(S3){m(s1){s(S1){m(ps2){p(s(S2){})}}}})}})"} > +// CHECK: !23 = metadata !{void (%struct.S3*)* @structureType3, metadata > +// CHECK: > !"f{0}(s(S3){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){})}})}}}})"} > +// CHECK: !24 = metadata !{void (%struct.S4*)* @structureType4, metadata > +// CHECK: > !"f{0}(s(S4){m(s1){s(S1){m(ps2){p(s(S2){m(ps3){p(s(S3){m(s1){s(S1){}}})}})}}}})"} > +// CHECK: !25 = metadata !{%struct.anon* @StructAnon, metadata > !"s(){m(A){si}}"} > +// CHECK: !26 = metadata !{i32 (%struct.SB*)* @structureTypeB, metadata > +// CHECK: !"f{si}(s(SB){m(){b(4:si)},m(){b(2:si)},m(N4){b(4:si)}, > +// CHECK: m(N2){b(2:si)},m(){b(4:ui)},m(){b(4:si)},m(){b(4:c:si)}, > +// CHECK: m(){b(4:c:si)},m(){b(4:cv:si)}})"} > +struct S2; > +struct S1{struct S2 *ps2;}; > +struct S3; > +struct S2{struct S3 *ps3;}; > +struct S3{struct S1 s1;}; > +struct S4{struct S1 s1;}; > +void structureType1(struct S1 s1){} > +void structureType2(struct S2 s2){} > +void structureType3(struct S3 s3){} > +void structureType4(struct S4 s4){} > +struct {int A;} StructAnon = {1}; > +struct SB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4; > + const int:4; int const :4; volatile const int:4;}; > +int structureTypeB(struct SB sb){return StructAnon.A;} > + > + > +// test UnionType > +// CHECK: !27 = metadata !{void (%union.U1*)* @unionType1, metadata > +// CHECK: > !"f{0}(u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}})"} > +// CHECK: !28 = metadata !{void (%union.U2*)* @unionType2, metadata > +// CHECK: > !"f{0}(u(U2){m(pu3){p(u(U3){m(u1){u(U1){m(pu2){p(u(U2){})}}}})}})"} > +// CHECK: !29 = metadata !{void (%union.U3*)* @unionType3, metadata > +// CHECK: > !"f{0}(u(U3){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){})}})}}}})"} > +// CHECK: !30 = metadata !{void (%union.U4*)* @unionType4, metadata > +// CHECK: > !"f{0}(u(U4){m(u1){u(U1){m(pu2){p(u(U2){m(pu3){p(u(U3){m(u1){u(U1){}}})}})}}}})"} > +// CHECK: !31 = metadata !{%union.anon* @UnionAnon, metadata > !"u(){m(A){si}}"} > +// CHECK: !32 = metadata !{i32 (%union.UB*)* @unionTypeB, metadata > +// CHECK: !"f{si}(u(UB){m(N2){b(2:si)},m(N4){b(4:si)},m(){b(2:si)}, > +// CHECK: m(){b(4:c:si)},m(){b(4:c:si)},m(){b(4:cv:si)},m(){b(4:si)}, > +// CHECK: m(){b(4:si)},m(){b(4:ui)}})"} > +union U2; > +union U1{union U2 *pu2;}; > +union U3; > +union U2{union U3 *pu3;}; > +union U3{union U1 u1;}; > +union U4{union U1 u1;}; > +void unionType1(union U1 u1) {} > +void unionType2(union U2 u2) {} > +void unionType3(union U3 u3) {} > +void unionType4(union U4 u4) {} > +union UB{int:4; int:2; int N4:4; int N2:2; unsigned int:4; signed int:4; > + const int:4; int const :4; volatile const int:4;}; > +union {int A;} UnionAnon = {1}; > +int unionTypeB(union UB ub) {return UnionAnon.A;} > + > + > +// test EnumType > +// CHECK: !33 = metadata !{i32* @EnumAnon, metadata !"e(){m(EA){3}}"} > +// CHECK: !34 = metadata !{i32 (i32)* @enumType, metadata > +// CHECK: !"f{si}(e(E){m(A){0},m(B){1},m(C){5},m(D){6}})"} > +enum E {A, B, C=5, D}; > +enum {EA=3} EnumAnon = EA; > +int enumType(enum E e) {return EnumAnon;} > > > _______________________________________________ > cfe-commits mailing list > [email protected] > http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits _______________________________________________ cfe-commits mailing list [email protected] http://lists.cs.uiuc.edu/mailman/listinfo/cfe-commits
