Author: Fraser Cormack Date: 2025-02-06T09:04:27Z New Revision: d4144ca27da174da3f8e7e3472e788b4246fd04e
URL: https://github.com/llvm/llvm-project/commit/d4144ca27da174da3f8e7e3472e788b4246fd04e DIFF: https://github.com/llvm/llvm-project/commit/d4144ca27da174da3f8e7e3472e788b4246fd04e.diff LOG: [libclc][NFC] Clang-format two files Pre-commit changes to avoid noise in an upcoming PR. Added: Modified: libclc/generic/lib/math/clc_fmod.cl libclc/generic/lib/math/clc_remainder.cl Removed: ################################################################################ diff --git a/libclc/generic/lib/math/clc_fmod.cl b/libclc/generic/lib/math/clc_fmod.cl index 35298b7e42d5c01..a4a2ab791df68a6 100644 --- a/libclc/generic/lib/math/clc_fmod.cl +++ b/libclc/generic/lib/math/clc_fmod.cl @@ -30,158 +30,156 @@ #include <clc/shared/clc_max.h> #include <math/clc_remainder.h> -_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y) -{ - int ux = as_int(x); - int ax = ux & EXSIGNBIT_SP32; - float xa = as_float(ax); - int sx = ux ^ ax; - int ex = ax >> EXPSHIFTBITS_SP32; - - int uy = as_int(y); - int ay = uy & EXSIGNBIT_SP32; - float ya = as_float(ay); - int ey = ay >> EXPSHIFTBITS_SP32; - - float xr = as_float(0x3f800000 | (ax & 0x007fffff)); - float yr = as_float(0x3f800000 | (ay & 0x007fffff)); - int c; - int k = ex - ey; - - while (k > 0) { - c = xr >= yr; - xr -= c ? yr : 0.0f; - xr += xr; - --k; - } - +_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y) { + int ux = as_int(x); + int ax = ux & EXSIGNBIT_SP32; + float xa = as_float(ax); + int sx = ux ^ ax; + int ex = ax >> EXPSHIFTBITS_SP32; + + int uy = as_int(y); + int ay = uy & EXSIGNBIT_SP32; + float ya = as_float(ay); + int ey = ay >> EXPSHIFTBITS_SP32; + + float xr = as_float(0x3f800000 | (ax & 0x007fffff)); + float yr = as_float(0x3f800000 | (ay & 0x007fffff)); + int c; + int k = ex - ey; + + while (k > 0) { c = xr >= yr; xr -= c ? yr : 0.0f; + xr += xr; + --k; + } - int lt = ex < ey; - - xr = lt ? xa : xr; - yr = lt ? ya : yr; + c = xr >= yr; + xr -= c ? yr : 0.0f; + int lt = ex < ey; - float s = as_float(ey << EXPSHIFTBITS_SP32); - xr *= lt ? 1.0f : s; + xr = lt ? xa : xr; + yr = lt ? ya : yr; - c = ax == ay; - xr = c ? 0.0f : xr; + float s = as_float(ey << EXPSHIFTBITS_SP32); + xr *= lt ? 1.0f : s; - xr = as_float(sx ^ as_int(xr)); + c = ax == ay; + xr = c ? 0.0f : xr; - c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0; - xr = c ? as_float(QNANBITPATT_SP32) : xr; + xr = as_float(sx ^ as_int(xr)); - return xr; + c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | + ay == 0; + xr = c ? as_float(QNANBITPATT_SP32) : xr; + return xr; } _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_fmod, float, float); #ifdef cl_khr_fp64 -_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y) -{ - ulong ux = as_ulong(x); - ulong ax = ux & ~SIGNBIT_DP64; - ulong xsgn = ux ^ ax; - double dx = as_double(ax); - int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); - int xexp1 = 11 - (int) __clc_clz(ax & MANTBITS_DP64); - xexp1 = xexp < 1 ? xexp1 : xexp; - - ulong uy = as_ulong(y); - ulong ay = uy & ~SIGNBIT_DP64; - double dy = as_double(ay); - int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); - int yexp1 = 11 - (int) __clc_clz(ay & MANTBITS_DP64); - yexp1 = yexp < 1 ? yexp1 : yexp; - - // First assume |x| > |y| - - // Set ntimes to the number of times we need to do a - // partial remainder. If the exponent of x is an exact multiple - // of 53 larger than the exponent of y, and the mantissa of x is - // less than the mantissa of y, ntimes will be one too large - // but it doesn't matter - it just means that we'll go round - // the loop below one extra time. - int ntimes = __clc_max(0, (xexp1 - yexp1) / 53); - double w = ldexp(dy, ntimes * 53); - w = ntimes == 0 ? dy : w; - double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; - - // Each time round the loop we compute a partial remainder. - // This is done by subtracting a large multiple of w - // from x each time, where w is a scaled up version of y. - // The subtraction must be performed exactly in quad - // precision, though the result at each stage can - // fit exactly in a double precision number. - int i; - double t, v, p, pp; - - for (i = 0; i < ntimes; i++) { - // Compute integral multiplier - t = __clc_trunc(dx / w); - - // Compute w * t in quad precision - p = w * t; - pp = fma(w, t, -p); - - // Subtract w * t from dx - v = dx - p; - dx = v + (((dx - v) - p) - pp); - - // If t was one too large, dx will be negative. Add back one w. - dx += dx < 0.0 ? w : 0.0; - - // Scale w down by 2^(-53) for the next iteration - w *= scale; - } - - // One more time - // Variable todd says whether the integer t is odd or not - t = __clc_floor(dx / w); - long lt = (long)t; - int todd = lt & 1; - +_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y) { + ulong ux = as_ulong(x); + ulong ax = ux & ~SIGNBIT_DP64; + ulong xsgn = ux ^ ax; + double dx = as_double(ax); + int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); + int xexp1 = 11 - (int)__clc_clz(ax & MANTBITS_DP64); + xexp1 = xexp < 1 ? xexp1 : xexp; + + ulong uy = as_ulong(y); + ulong ay = uy & ~SIGNBIT_DP64; + double dy = as_double(ay); + int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); + int yexp1 = 11 - (int)__clc_clz(ay & MANTBITS_DP64); + yexp1 = yexp < 1 ? yexp1 : yexp; + + // First assume |x| > |y| + + // Set ntimes to the number of times we need to do a + // partial remainder. If the exponent of x is an exact multiple + // of 53 larger than the exponent of y, and the mantissa of x is + // less than the mantissa of y, ntimes will be one too large + // but it doesn't matter - it just means that we'll go round + // the loop below one extra time. + int ntimes = __clc_max(0, (xexp1 - yexp1) / 53); + double w = ldexp(dy, ntimes * 53); + w = ntimes == 0 ? dy : w; + double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; + + // Each time round the loop we compute a partial remainder. + // This is done by subtracting a large multiple of w + // from x each time, where w is a scaled up version of y. + // The subtraction must be performed exactly in quad + // precision, though the result at each stage can + // fit exactly in a double precision number. + int i; + double t, v, p, pp; + + for (i = 0; i < ntimes; i++) { + // Compute integral multiplier + t = __clc_trunc(dx / w); + + // Compute w * t in quad precision p = w * t; pp = fma(w, t, -p); + + // Subtract w * t from dx v = dx - p; dx = v + (((dx - v) - p) - pp); - i = dx < 0.0; - todd ^= i; - dx += i ? w : 0.0; - // At this point, dx lies in the range [0,dy) - double ret = as_double(xsgn ^ as_ulong(dx)); - dx = as_double(ax); + // If t was one too large, dx will be negative. Add back one w. + dx += dx < 0.0 ? w : 0.0; + + // Scale w down by 2^(-53) for the next iteration + w *= scale; + } + + // One more time + // Variable todd says whether the integer t is odd or not + t = __clc_floor(dx / w); + long lt = (long)t; + int todd = lt & 1; + + p = w * t; + pp = fma(w, t, -p); + v = dx - p; + dx = v + (((dx - v) - p) - pp); + i = dx < 0.0; + todd ^= i; + dx += i ? w : 0.0; + + // At this point, dx lies in the range [0,dy) + double ret = as_double(xsgn ^ as_ulong(dx)); + dx = as_double(ax); - // Now handle |x| == |y| - int c = dx == dy; - t = as_double(xsgn); - ret = c ? t : ret; + // Now handle |x| == |y| + int c = dx == dy; + t = as_double(xsgn); + ret = c ? t : ret; - // Next, handle |x| < |y| - c = dx < dy; - ret = c ? x : ret; + // Next, handle |x| < |y| + c = dx < dy; + ret = c ? x : ret; - // We don't need anything special for |x| == 0 + // We don't need anything special for |x| == 0 - // |y| is 0 - c = dy == 0.0; - ret = c ? as_double(QNANBITPATT_DP64) : ret; + // |y| is 0 + c = dy == 0.0; + ret = c ? as_double(QNANBITPATT_DP64) : ret; - // y is +-Inf, NaN - c = yexp > BIASEDEMAX_DP64; - t = y == y ? x : y; - ret = c ? t : ret; + // y is +-Inf, NaN + c = yexp > BIASEDEMAX_DP64; + t = y == y ? x : y; + ret = c ? t : ret; - // x is +=Inf, NaN - c = xexp > BIASEDEMAX_DP64; - ret = c ? as_double(QNANBITPATT_DP64) : ret; + // x is +=Inf, NaN + c = xexp > BIASEDEMAX_DP64; + ret = c ? as_double(QNANBITPATT_DP64) : ret; - return ret; + return ret; } -_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, double); +_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, + double); #endif diff --git a/libclc/generic/lib/math/clc_remainder.cl b/libclc/generic/lib/math/clc_remainder.cl index 3a357de6f1962f9..31d17d5aaf6b6a5 100644 --- a/libclc/generic/lib/math/clc_remainder.cl +++ b/libclc/generic/lib/math/clc_remainder.cl @@ -30,192 +30,192 @@ #include <clc/shared/clc_max.h> #include <math/clc_remainder.h> -_CLC_DEF _CLC_OVERLOAD float __clc_remainder(float x, float y) -{ - int ux = as_int(x); - int ax = ux & EXSIGNBIT_SP32; - float xa = as_float(ax); - int sx = ux ^ ax; - int ex = ax >> EXPSHIFTBITS_SP32; - - int uy = as_int(y); - int ay = uy & EXSIGNBIT_SP32; - float ya = as_float(ay); - int ey = ay >> EXPSHIFTBITS_SP32; - - float xr = as_float(0x3f800000 | (ax & 0x007fffff)); - float yr = as_float(0x3f800000 | (ay & 0x007fffff)); - int c; - int k = ex - ey; - - uint q = 0; - - while (k > 0) { - c = xr >= yr; - q = (q << 1) | c; - xr -= c ? yr : 0.0f; - xr += xr; - --k; - } - - c = xr > yr; +_CLC_DEF _CLC_OVERLOAD float __clc_remainder(float x, float y) { + int ux = as_int(x); + int ax = ux & EXSIGNBIT_SP32; + float xa = as_float(ax); + int sx = ux ^ ax; + int ex = ax >> EXPSHIFTBITS_SP32; + + int uy = as_int(y); + int ay = uy & EXSIGNBIT_SP32; + float ya = as_float(ay); + int ey = ay >> EXPSHIFTBITS_SP32; + + float xr = as_float(0x3f800000 | (ax & 0x007fffff)); + float yr = as_float(0x3f800000 | (ay & 0x007fffff)); + int c; + int k = ex - ey; + + uint q = 0; + + while (k > 0) { + c = xr >= yr; q = (q << 1) | c; xr -= c ? yr : 0.0f; + xr += xr; + --k; + } - int lt = ex < ey; + c = xr > yr; + q = (q << 1) | c; + xr -= c ? yr : 0.0f; - q = lt ? 0 : q; - xr = lt ? xa : xr; - yr = lt ? ya : yr; + int lt = ex < ey; - c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1)); - xr -= c ? yr : 0.0f; - q += c; + q = lt ? 0 : q; + xr = lt ? xa : xr; + yr = lt ? ya : yr; - float s = as_float(ey << EXPSHIFTBITS_SP32); - xr *= lt ? 1.0f : s; + c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1)); + xr -= c ? yr : 0.0f; + q += c; - c = ax == ay; - xr = c ? 0.0f : xr; + float s = as_float(ey << EXPSHIFTBITS_SP32); + xr *= lt ? 1.0f : s; - xr = as_float(sx ^ as_int(xr)); + c = ax == ay; + xr = c ? 0.0f : xr; - c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0; - xr = c ? as_float(QNANBITPATT_SP32) : xr; + xr = as_float(sx ^ as_int(xr)); - return xr; + c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | + ay == 0; + xr = c ? as_float(QNANBITPATT_SP32) : xr; + return xr; } -_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_remainder, float, float); +_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_remainder, float, + float); #ifdef cl_khr_fp64 -_CLC_DEF _CLC_OVERLOAD double __clc_remainder(double x, double y) -{ - ulong ux = as_ulong(x); - ulong ax = ux & ~SIGNBIT_DP64; - ulong xsgn = ux ^ ax; - double dx = as_double(ax); - int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); - int xexp1 = 11 - (int) __clc_clz(ax & MANTBITS_DP64); - xexp1 = xexp < 1 ? xexp1 : xexp; - - ulong uy = as_ulong(y); - ulong ay = uy & ~SIGNBIT_DP64; - double dy = as_double(ay); - int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); - int yexp1 = 11 - (int) __clc_clz(ay & MANTBITS_DP64); - yexp1 = yexp < 1 ? yexp1 : yexp; - - int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1; - - // First assume |x| > |y| - - // Set ntimes to the number of times we need to do a - // partial remainder. If the exponent of x is an exact multiple - // of 53 larger than the exponent of y, and the mantissa of x is - // less than the mantissa of y, ntimes will be one too large - // but it doesn't matter - it just means that we'll go round - // the loop below one extra time. - int ntimes = __clc_max(0, (xexp1 - yexp1) / 53); - double w = ldexp(dy, ntimes * 53); - w = ntimes == 0 ? dy : w; - double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; - - // Each time round the loop we compute a partial remainder. - // This is done by subtracting a large multiple of w - // from x each time, where w is a scaled up version of y. - // The subtraction must be performed exactly in quad - // precision, though the result at each stage can - // fit exactly in a double precision number. - int i; - double t, v, p, pp; - - for (i = 0; i < ntimes; i++) { - // Compute integral multiplier - t = __clc_trunc(dx / w); - - // Compute w * t in quad precision - p = w * t; - pp = fma(w, t, -p); - - // Subtract w * t from dx - v = dx - p; - dx = v + (((dx - v) - p) - pp); - - // If t was one too large, dx will be negative. Add back one w. - dx += dx < 0.0 ? w : 0.0; - - // Scale w down by 2^(-53) for the next iteration - w *= scale; - } - - // One more time - // Variable todd says whether the integer t is odd or not - t = __clc_floor(dx / w); - long lt = (long)t; - int todd = lt & 1; - +_CLC_DEF _CLC_OVERLOAD double __clc_remainder(double x, double y) { + ulong ux = as_ulong(x); + ulong ax = ux & ~SIGNBIT_DP64; + ulong xsgn = ux ^ ax; + double dx = as_double(ax); + int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); + int xexp1 = 11 - (int)__clc_clz(ax & MANTBITS_DP64); + xexp1 = xexp < 1 ? xexp1 : xexp; + + ulong uy = as_ulong(y); + ulong ay = uy & ~SIGNBIT_DP64; + double dy = as_double(ay); + int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); + int yexp1 = 11 - (int)__clc_clz(ay & MANTBITS_DP64); + yexp1 = yexp < 1 ? yexp1 : yexp; + + int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1; + + // First assume |x| > |y| + + // Set ntimes to the number of times we need to do a + // partial remainder. If the exponent of x is an exact multiple + // of 53 larger than the exponent of y, and the mantissa of x is + // less than the mantissa of y, ntimes will be one too large + // but it doesn't matter - it just means that we'll go round + // the loop below one extra time. + int ntimes = __clc_max(0, (xexp1 - yexp1) / 53); + double w = ldexp(dy, ntimes * 53); + w = ntimes == 0 ? dy : w; + double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; + + // Each time round the loop we compute a partial remainder. + // This is done by subtracting a large multiple of w + // from x each time, where w is a scaled up version of y. + // The subtraction must be performed exactly in quad + // precision, though the result at each stage can + // fit exactly in a double precision number. + int i; + double t, v, p, pp; + + for (i = 0; i < ntimes; i++) { + // Compute integral multiplier + t = __clc_trunc(dx / w); + + // Compute w * t in quad precision p = w * t; pp = fma(w, t, -p); + + // Subtract w * t from dx v = dx - p; dx = v + (((dx - v) - p) - pp); - i = dx < 0.0; - todd ^= i; - dx += i ? w : 0.0; - // At this point, dx lies in the range [0,dy) + // If t was one too large, dx will be negative. Add back one w. + dx += dx < 0.0 ? w : 0.0; + + // Scale w down by 2^(-53) for the next iteration + w *= scale; + } + + // One more time + // Variable todd says whether the integer t is odd or not + t = __clc_floor(dx / w); + long lt = (long)t; + int todd = lt & 1; + + p = w * t; + pp = fma(w, t, -p); + v = dx - p; + dx = v + (((dx - v) - p) - pp); + i = dx < 0.0; + todd ^= i; + dx += i ? w : 0.0; + + // At this point, dx lies in the range [0,dy) - // For the fmod function, we're done apart from setting the correct sign. - // - // For the remainder function, we need to adjust dx - // so that it lies in the range (-y/2, y/2] by carefully - // subtracting w (== dy == y) if necessary. The rigmarole - // with todd is to get the correct sign of the result - // when x/y lies exactly half way between two integers, - // when we need to choose the even integer. + // For the fmod function, we're done apart from setting the correct sign. + // + // For the remainder function, we need to adjust dx + // so that it lies in the range (-y/2, y/2] by carefully + // subtracting w (== dy == y) if necessary. The rigmarole + // with todd is to get the correct sign of the result + // when x/y lies exactly half way between two integers, + // when we need to choose the even integer. - int al = (2.0*dx > w) | (todd & (2.0*dx == w)); - double dxl = dx - (al ? w : 0.0); + int al = (2.0 * dx > w) | (todd & (2.0 * dx == w)); + double dxl = dx - (al ? w : 0.0); - int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w)); - double dxg = dx - (ag ? w : 0.0); + int ag = (dx > 0.5 * w) | (todd & (dx == 0.5 * w)); + double dxg = dx - (ag ? w : 0.0); - dx = dy < 0x1.0p+1022 ? dxl : dxg; + dx = dy < 0x1.0p+1022 ? dxl : dxg; - double ret = as_double(xsgn ^ as_ulong(dx)); - dx = as_double(ax); + double ret = as_double(xsgn ^ as_ulong(dx)); + dx = as_double(ax); - // Now handle |x| == |y| - int c = dx == dy; - t = as_double(xsgn); - ret = c ? t : ret; + // Now handle |x| == |y| + int c = dx == dy; + t = as_double(xsgn); + ret = c ? t : ret; - // Next, handle |x| < |y| - c = dx < dy; - ret = c ? x : ret; + // Next, handle |x| < |y| + c = dx < dy; + ret = c ? x : ret; - c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy); - // we could use a conversion here instead since qsgn = +-1 - p = qsgn == 1 ? -1.0 : 1.0; - t = fma(y, p, x); - ret = c ? t : ret; + c &= (yexp<1023 & 2.0 * dx> dy) | (dx > 0.5 * dy); + // we could use a conversion here instead since qsgn = +-1 + p = qsgn == 1 ? -1.0 : 1.0; + t = fma(y, p, x); + ret = c ? t : ret; - // We don't need anything special for |x| == 0 + // We don't need anything special for |x| == 0 - // |y| is 0 - c = dy == 0.0; - ret = c ? as_double(QNANBITPATT_DP64) : ret; + // |y| is 0 + c = dy == 0.0; + ret = c ? as_double(QNANBITPATT_DP64) : ret; - // y is +-Inf, NaN - c = yexp > BIASEDEMAX_DP64; - t = y == y ? x : y; - ret = c ? t : ret; + // y is +-Inf, NaN + c = yexp > BIASEDEMAX_DP64; + t = y == y ? x : y; + ret = c ? t : ret; - // x is +=Inf, NaN - c = xexp > BIASEDEMAX_DP64; - ret = c ? as_double(QNANBITPATT_DP64) : ret; + // x is +=Inf, NaN + c = xexp > BIASEDEMAX_DP64; + ret = c ? as_double(QNANBITPATT_DP64) : ret; - return ret; + return ret; } -_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_remainder, double, double); +_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_remainder, double, + double); #endif _______________________________________________ cfe-commits mailing list [email protected] https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits
