================
@@ -0,0 +1,1458 @@
+//===- X86.cpp 
------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM 
Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ABI/ABIFunctionInfo.h"
+#include "llvm/ABI/ABIInfo.h"
+#include "llvm/ABI/TargetCodegenInfo.h"
+#include "llvm/ABI/Types.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/TargetParser/Triple.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+
+namespace llvm {
+namespace abi {
+
+static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
+  switch (AVXLevel) {
+  case X86AVXABILevel::AVX512:
+    return 512;
+  case X86AVXABILevel::AVX:
+    return 256;
+  case X86AVXABILevel::None:
+    return 128;
+  }
+  llvm_unreachable("Unknown AVXLevel");
+}
+
+class X86_64ABIInfo : public ABIInfo {
+public:
+  enum Class {
+    Integer = 0,
+    SSE,
+    SSEUp,
+    X87,
+    X87UP,
+    Complex_X87,
+    NoClass,
+    Memory
+  };
+
+private:
+  TypeBuilder &TB;
+  X86AVXABILevel AVXLevel;
+  bool Has64BitPointers;
+  const llvm::Triple &TargetTriple;
+
+  static Class merge(Class Accum, Class Field);
+
+  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
+
+  void classify(const Type *T, uint64_t OffsetBase, Class &Lo, Class &Hi,
+                bool IsNamedArg, bool IsRegCall = false) const;
+
+  const Type *getIntegerTypeAtOffset(const Type *IRType, unsigned IROffset,
+                                     const Type *SourceTy,
+                                     unsigned SourceOffset,
+                                     bool InMemory = false) const;
+
+  const Type *getSSETypeAtOffset(const Type *ABIType, unsigned ABIOffset,
+                                 const Type *SourceTy,
+                                 unsigned SourceOffset) const;
+  bool isIllegalVectorType(const Type *Ty) const;
+  bool containsMatrixField(const RecordType *RT) const;
+
+  void computeInfo(ABIFunctionInfo &FI) const override;
+  ABIArgInfo getIndirectReturnResult(const Type *Ty) const;
+  const Type *getFPTypeAtOffset(const Type *Ty, unsigned Offset) const;
+
+  const Type *isSingleElementStruct(const Type *Ty) const;
+  const Type *getByteVectorType(const Type *Ty) const;
+
+  const Type *createPairType(const Type *Lo, const Type *Hi) const;
+  ABIArgInfo getIndirectResult(const Type *Ty, unsigned FreeIntRegs) const;
+
+  ABIArgInfo classifyReturnType(const Type *RetTy) const;
+  const char *getClassName(Class C) const;
+
+  ABIArgInfo classifyArgumentType(const Type *Ty, unsigned FreeIntRegs,
+                                  unsigned &NeededInt, unsigned &NeededSse,
+                                  bool IsNamedArg,
+                                  bool IsRegCall = false) const;
+  const Type *useFirstFieldIfTransparentUnion(const Type *Ty) const;
+
+public:
+  X86_64ABIInfo(TypeBuilder &TypeBuilder, const Triple &Triple,
+                X86AVXABILevel AVXABILevel, bool Has64BitPtrs,
+                const ABICompatInfo &Compat)
+      : ABIInfo(Compat), TB(TypeBuilder), AVXLevel(AVXABILevel),
+        Has64BitPointers(Has64BitPtrs), TargetTriple(Triple) {}
+
+  bool has64BitPointers() const { return Has64BitPointers; }
+};
+
+// Gets the "best" type to represent the union.
+static const Type *reduceUnionForX8664(const RecordType *UnionType,
+                                       TypeBuilder &TB) {
+  assert(UnionType->isUnion() && "Expected union type");
+
+  ArrayRef<FieldInfo> Fields = UnionType->getFields();
+  if (Fields.empty()) {
+    return nullptr;
+  }
+
+  const Type *StorageType = nullptr;
+
+  for (const auto &Field : Fields) {
+    if (Field.IsBitField && Field.IsUnnamedBitfield &&
+        Field.BitFieldWidth == 0) {
+      continue;
+    }
+
+    const Type *FieldType = Field.FieldType;
+
+    if (UnionType->isTransparentUnion() && !StorageType) {
+      StorageType = FieldType;
+      break;
+    }
+
+    if (!StorageType ||
+        FieldType->getAlignment() > StorageType->getAlignment() ||
+        (FieldType->getAlignment() == StorageType->getAlignment() &&
+         TypeSize::isKnownGT(FieldType->getSizeInBits(),
+                             StorageType->getSizeInBits()))) {
+      StorageType = FieldType;
+    }
+  }
+  return StorageType;
+}
+
+void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
+                              Class &Hi) const {
+  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+  //
+  // (a) If one of the classes is Memory, the whole argument is passed in
+  //     memory.
+  //
+  // (b) If X87UP is not preceded by X87, the whole argument is passed in
+  //     memory.
+  //
+  // (c) If the size of the aggregate exceeds two eightbytes and the first
+  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
+  //     argument is passed in memory. NOTE: This is necessary to keep the
+  //     ABI working for processors that don't support the __m256 type.
+  //
+  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
+  //
+  // Some of these are enforced by the merging logic.  Others can arise
+  // only with unions; for example:
+  //   union { _Complex double; unsigned; }
+  //
+  // Note that clauses (b) and (c) were added in 0.98.
+
+  if (Hi == Memory)
+    Lo = Memory;
+  if (Hi == X87UP && Lo != X87 && getABICompatInfo().Flags.HonorsRevision98)
+    Lo = Memory;
+  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
+    Lo = Memory;
+  if (Hi == SSEUp && Lo != SSE)
+    Hi = SSE;
+}
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
+  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+  // classified recursively so that always two fields are
+  // considered. The resulting class is calculated according to
+  // the classes of the fields in the eightbyte:
+  //
+  // (a) If both classes are equal, this is the resulting class.
+  //
+  // (b) If one of the classes is NO_CLASS, the resulting class is
+  // the other class.
+  //
+  // (c) If one of the classes is MEMORY, the result is the MEMORY
+  // class.
+  //
+  // (d) If one of the classes is INTEGER, the result is the
+  // INTEGER.
+  //
+  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+  // MEMORY is used as class.
+  //
+  // (f) Otherwise class SSE is used.
+
+  // Accum should never be memory (we should have returned) or
+  // ComplexX87 (because this cannot be passed in a structure).
+  assert((Accum != Memory && Accum != Complex_X87) &&
+         "Invalid accumulated classification during merge.");
+
+  if (Accum == Field || Field == NoClass)
+    return Accum;
+  if (Accum == NoClass)
+    return Field;
+  if (Field == Memory)
+    return Memory;
+  if (Accum == Integer || Field == Integer)
+    return Integer;
+  if (Field == X87 || Field == X87UP || Field == Complex_X87 || Accum == X87 ||
+      Accum == X87UP)
+    return Memory;
+
+  return SSE;
+}
+
+bool X86_64ABIInfo::containsMatrixField(const RecordType *RT) const {
+  for (const auto &Field : RT->getFields()) {
+    const Type *FieldType = Field.FieldType;
+
+    if (const auto *AT = dyn_cast<ArrayType>(FieldType))
+      return AT->isMatrixType();
+
+    if (const auto *NestedRT = dyn_cast<RecordType>(FieldType))
+      return containsMatrixField(NestedRT);
+  }
+  return false;
+}
+
+void X86_64ABIInfo::classify(const Type *T, uint64_t OffsetBase, Class &Lo,
+                             Class &Hi, bool IsNamedArg, bool IsRegCall) const 
{
+  Lo = Hi = NoClass;
+  Class &Current = OffsetBase < 64 ? Lo : Hi;
+  Current = Memory;
+
+  if (T->isVoid()) {
+    Current = NoClass;
+    return;
+  }
+
+  if (const auto *IT = dyn_cast<IntegerType>(T)) {
+    auto BitWidth = IT->getSizeInBits().getFixedValue();
+
+    if (BitWidth == 128 ||
+        (IT->isBitInt() && BitWidth > 64 && BitWidth <= 128)) {
+      Lo = Integer;
+      Hi = Integer;
+    } else if (BitWidth <= 64)
+      Current = Integer;
+
+    return;
+  }
+
+  if (const auto *FT = dyn_cast<FloatType>(T)) {
+    const auto *FltSem = FT->getSemantics();
+
+    if (FltSem == &llvm::APFloat::IEEEsingle() ||
+        FltSem == &llvm::APFloat::IEEEdouble() ||
+        FltSem == &llvm::APFloat::IEEEhalf() ||
+        FltSem == &llvm::APFloat::BFloat()) {
+      Current = SSE;
+    } else if (FltSem == &llvm::APFloat::IEEEquad()) {
+      Lo = SSE;
+      Hi = SSEUp;
+    } else if (FltSem == &llvm::APFloat::x87DoubleExtended()) {
+      Lo = X87;
+      Hi = X87UP;
+    } else
+      Current = SSE;
+    return;
+  }
+  if (T->isPointer()) {
+    Current = Integer;
+    return;
+  }
+
+  if (const auto *MPT = dyn_cast<MemberPointerType>(T)) {
+    if (MPT->isFunctionPointer()) {
+      if (Has64BitPointers) {
+        Lo = Hi = Integer;
+      } else {
+        uint64_t EbFuncPtr = OffsetBase / 64;
+        uint64_t EbThisAdj = (OffsetBase + 64 - 1) / 64;
+        if (EbFuncPtr != EbThisAdj) {
+          Lo = Hi = Integer;
+        } else
+          Current = Integer;
+      }
+    } else
+      Current = Integer;
+    return;
+  }
+
+  if (const auto *VT = dyn_cast<VectorType>(T)) {
+    auto Size = VT->getSizeInBits().getFixedValue();
+    const Type *ElementType = VT->getElementType();
+
+    if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
+      // gcc passes the following as integer:
+      // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
+      // 2 bytes - <2 x char>, <1 x short>
+      // 1 byte  - <1 x char>
+      Current = Integer;
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      uint64_t EbLo = (OffsetBase) / 64;
+      uint64_t EbHi = (OffsetBase + Size - 1) / 64;
+      if (EbLo != EbHi)
+        Hi = Lo;
+    } else if (Size == 64) {
+      if (const auto *FT = dyn_cast<FloatType>(ElementType)) {
+        // gcc passes <1 x double> in memory. :(
+        if (FT->getSemantics() == &llvm::APFloat::IEEEdouble())
+          return;
+      }
+
+      // gcc passes <1 x long long> as SSE but clang used to unconditionally
+      // pass them as integer.  For platforms where clang is the de facto
+      // platform compiler, we must continue to use integer.
+      if (const auto *IT = dyn_cast<IntegerType>(ElementType)) {
+        uint64_t ElemBits = IT->getSizeInBits().getFixedValue();
+        if (!getABICompatInfo().Flags.ClassifyIntegerMMXAsSSE &&
+            (ElemBits == 64 || ElemBits == 32)) {
+          Current = Integer;
+        } else
+          Current = SSE;
+      } else
+        Current = SSE;
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      if (OffsetBase && OffsetBase != 64)
+        Hi = Lo;
+    } else if (Size == 128 ||
+               (IsNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) 
{
+      if (const auto *IT = dyn_cast<IntegerType>(ElementType)) {
+        uint64_t ElemBits = IT->getSizeInBits().getFixedValue();
+        // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
+        if (getABICompatInfo().Flags.PassInt128VectorsInMem && Size != 128 &&
+            ElemBits == 128)
+          return;
+      }
+
+      // Arguments of 256-bits are split into four eightbyte chunks. The
+      // least significant one belongs to class SSE and all the others to class
+      // SSEUP. The original Lo and Hi design considers that types can't be
+      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
+      // This design isn't correct for 256-bits, but since there're no cases
+      // where the upper parts would need to be inspected, avoid adding
+      // complexity and just consider Hi to match the 64-256 part.
+      //
+      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
+      // registers if they are "named", i.e. not part of the "..." of a
+      // variadic function.
+      //
+      // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
+      // split into eight eightbyte chunks, one SSE and seven SSEUP.
+      Lo = SSE;
+      Hi = SSEUp;
+    }
+    return;
+  }
+
+  if (const auto *CT = dyn_cast<ComplexType>(T)) {
+    const Type *ElementType = CT->getElementType();
+    uint64_t Size = T->getSizeInBits().getFixedValue();
+
+    if (isa<IntegerType>(ElementType)) {
+      if (Size <= 64)
+        Current = Integer;
+      else if (Size <= 128)
+        Lo = Hi = Integer;
+    } else if (const auto *EFT = dyn_cast<FloatType>(ElementType)) {
+      const auto *FltSem = EFT->getSemantics();
+      if (FltSem == &llvm::APFloat::IEEEhalf() ||
+          FltSem == &llvm::APFloat::IEEEsingle() ||
+          FltSem == &llvm::APFloat::BFloat())
+        Current = SSE;
+      else if (FltSem == &llvm::APFloat::IEEEquad())
+        Current = Memory;
+      else if (FltSem == &llvm::APFloat::x87DoubleExtended())
+        Current = Complex_X87;
+      else if (FltSem == &llvm::APFloat::IEEEdouble())
+        Lo = Hi = SSE;
+      else
+        llvm_unreachable("Unexpected long double representation!");
+    }
+
+    uint64_t ElementSize = ElementType->getSizeInBits().getFixedValue();
+    // If this complex type crosses an eightbyte boundary then it
+    // should be split.
+    uint64_t EbReal = OffsetBase / 64;
+    uint64_t EbImag = (OffsetBase + ElementSize) / 64;
+    if (Hi == NoClass && EbReal != EbImag)
+      Hi = Lo;
+
+    return;
+  }
+
+  if (const auto *AT = dyn_cast<ArrayType>(T)) {
+    uint64_t Size = AT->getSizeInBits().getFixedValue();
+
+    if (!IsRegCall && Size > 512)
+      return;
+
+    const Type *ElementType = AT->getElementType();
+    uint64_t ElemAlign = ElementType->getAlignment().value() * 8;
+    if (OffsetBase % ElemAlign)
+      return;
+
+    Current = NoClass;
+    uint64_t EltSize = ElementType->getSizeInBits().getFixedValue();
+    uint64_t ArraySize = AT->getNumElements();
+
+    if (Size > 128 &&
+        (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
+      return;
+
+    for (uint64_t I = 0, Offset = OffsetBase; I < ArraySize;
+         ++I, Offset += EltSize) {
+      Class FieldLo, FieldHi;
+      classify(ElementType, Offset, FieldLo, FieldHi, IsNamedArg);
+      Lo = merge(Lo, FieldLo);
+      Hi = merge(Hi, FieldHi);
+      if (Lo == Memory || Hi == Memory)
+        break;
+    }
+    postMerge(Size, Lo, Hi);
+    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array 
classification.");
+    return;
+  }
+  if (const auto *RT = dyn_cast<RecordType>(T)) {
+    uint64_t Size = RT->getSizeInBits().getFixedValue();
+
+    if (containsMatrixField(RT)) {
+      Lo = Memory;
+      return;
+    }
+
+    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+    // than eight eightbytes, ..., it has class MEMORY.
+    if (Size > 512)
+      return;
+
+    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
+    // copy constructor or a non-trivial destructor, it is passed by invisible
+    // reference.
+    if (getRecordArgABI(RT, RT->isCXXRecord()))
+      return;
+
+    // Assume variable sized types are passed in memory.
+    if (RT->hasFlexibleArrayMember())
+      return;
+
+    // Reset Lo class, this will be recomputed.
+    Current = NoClass;
+
+    // If this is a C++ record, classify the bases first.
+    if (RT->isCXXRecord()) {
+      for (const auto &Base : RT->getBaseClasses()) {
+
+        // Classify this field.
+        //
+        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
+        // single eightbyte, each is classified separately. Each eightbyte gets
+        // initialized to class NO_CLASS.
+        Class FieldLo, FieldHi;
+        uint64_t Offset = OffsetBase + Base.OffsetInBits;
+        classify(Base.FieldType, Offset, FieldLo, FieldHi, IsNamedArg);
+        Lo = merge(Lo, FieldLo);
+        Hi = merge(Hi, FieldHi);
+
+        if (getABICompatInfo().Flags.ReturnCXXRecordGreaterThan128InMem &&
+            (Size > 128 &&
+             (Size != Base.FieldType->getSizeInBits().getFixedValue() ||
+              Size > getNativeVectorSizeForAVXABI(AVXLevel)))) {
+          Lo = Memory;
+          postMerge(Size, Lo, Hi);
+          return;
+        }
+
+        if (Lo == Memory || Hi == Memory) {
+          postMerge(Size, Lo, Hi);
+          return;
+        }
+      }
+    }
+
+    // Classify the fields one at a time, merging the results.
+
+    bool IsUnion = RT->isUnion() && !getABICompatInfo().Flags.Clang11Compat;
+    for (const auto &Field : RT->getFields()) {
+      uint64_t Offset = OffsetBase + Field.OffsetInBits;
+      bool BitField = Field.IsBitField;
+
+      if (BitField && Field.IsUnnamedBitfield)
+        continue;
+
+      if (Size > 128 &&
+          ((!IsUnion &&
+            Size != Field.FieldType->getSizeInBits().getFixedValue()) ||
+           Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
+        Lo = Memory;
+        postMerge(Size, Lo, Hi);
+        return;
+      }
+
+      bool IsInMemory = Offset % (Field.FieldType->getAlignment().value() * 8);
+      if (!BitField && IsInMemory) {
+        Lo = Memory;
+        postMerge(Size, Lo, Hi);
+        return;
+      }
+
+      Class FieldLo, FieldHi;
+
+      if (BitField) {
+        uint64_t BitFieldSize = Field.BitFieldWidth;
+        uint64_t EbLo = Offset / 64;
+        uint64_t EbHi = (Offset + BitFieldSize - 1) / 64;
+
+        if (EbLo) {
+          assert(EbHi == EbLo && "Invalid classification, type > 16 bytes.");
+          FieldLo = NoClass;
+          FieldHi = Integer;
+        } else {
+          FieldLo = Integer;
+          FieldHi = EbHi ? Integer : NoClass;
+        }
+      } else
+        classify(Field.FieldType, Offset, FieldLo, FieldHi, IsNamedArg);
+
+      Lo = merge(Lo, FieldLo);
+      Hi = merge(Hi, FieldHi);
+      if (Lo == Memory || Hi == Memory)
+        break;
+    }
+    postMerge(Size, Lo, Hi);
+    return;
+  }
+
+  Lo = Memory;
+  Hi = NoClass;
+}
+
+const Type *
+X86_64ABIInfo::useFirstFieldIfTransparentUnion(const Type *Ty) const {
+  if (const auto *RT = dyn_cast<RecordType>(Ty)) {
+    if (RT->isUnion() && RT->isTransparentUnion()) {
+      auto Fields = RT->getFields();
+      assert(!Fields.empty() && "sema created an empty transparent union");
+      return Fields.front().FieldType;
+    }
+  }
+  return Ty;
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyArgumentType(const Type *Ty, unsigned FreeIntRegs,
+                                    unsigned &NeededInt, unsigned &NeededSSE,
+                                    bool IsNamedArg, bool IsRegCall) const {
+
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  X86_64ABIInfo::Class Lo, Hi;
+  classify(Ty, 0, Lo, Hi, IsNamedArg, IsRegCall);
+
+  // Check some invariants
+  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+  NeededInt = 0;
+  NeededSSE = 0;
+  const Type *ResType = nullptr;
+
+  switch (Lo) {
+  case NoClass:
+    if (Hi == NoClass)
+      return ABIArgInfo::getIgnore();
+    // If the low part is just padding, it takes no register, leave ResType
+    // null.
+    assert((Hi == SSE || Hi == Integer || Hi == X87UP) &&
+           "Unknown missing lo part");
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+    // on the stack.
+  case Memory:
+    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+    // COMPLEX_X87, it is passed in memory.
+  case X87:
+  case Complex_X87:
+    if (getRecordArgABI(dyn_cast<RecordType>(Ty)) == RAA_Indirect)
+      ++NeededInt;
+    return getIndirectResult(Ty, FreeIntRegs);
+
+  case SSEUp:
+  case X87UP:
+    llvm_unreachable("Invalid classification for lo word.");
+
+    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+    // and %r9 is used.
+  case Integer:
+    ++NeededInt;
+
+    // Pick an 8-byte type based on the preferred type.
+    ResType = getIntegerTypeAtOffset(Ty, 0, Ty, 0);
+
+    // If we have a sign or zero extended integer, make sure to return Extend
+    // so that the parameter gets the right LLVM IR attributes.
+    if (Hi == NoClass && ResType->isInteger()) {
+      if (Ty->isInteger() && isPromotableInteger(cast<IntegerType>(Ty)))
+        return ABIArgInfo::getExtend(Ty);
+    }
+
+    if (ResType->isInteger() && ResType->getSizeInBits() == 128) {
+      assert(Hi == Integer);
+      ++NeededInt;
+      return ABIArgInfo::getDirect(ResType);
+    }
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+    // available SSE register is used, the registers are taken in the
+    // order from %xmm0 to %xmm7.
+  case SSE:
+    ResType = getSSETypeAtOffset(Ty, 0, Ty, 0);
+    ++NeededSSE;
+    break;
+  }
+
+  const Type *HighPart = nullptr;
+  switch (Hi) {
+    // Memory was handled previously, Complex_X87 and X87 should
+    // never occur as hi classes, and X87UP must be preceded by X87,
+    // which is passed in memory.
+  case Memory:
+  case X87:
+  case Complex_X87:
+    llvm_unreachable("Invalid classification for hi word.");
+
+  case NoClass:
+    break;
+
+  case Integer:
+    ++NeededInt;
+    // Pick an 8-byte type based on the preferred type.
+    HighPart = getIntegerTypeAtOffset(Ty, 8, Ty, 8);
+
+    if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+      return ABIArgInfo::getDirect(HighPart, 8);
+    break;
+
+    // X87UP generally doesn't occur here (long double is passed in
+    // memory), except in situations involving unions.
+  case X87UP:
+  case SSE:
+    ++NeededSSE;
+    HighPart = getSSETypeAtOffset(Ty, 8, Ty, 8);
+
+    if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+      return ABIArgInfo::getDirect(HighPart, 8);
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+    // eightbyte is passed in the upper half of the last used SSE
+    // register. This only happens when 128-bit vectors are passed.
+  case SSEUp:
+    assert(Lo == SSE && "Unexpected SSEUp classification");
+    ResType = getByteVectorType(Ty);
+    break;
+  }
+
+  // If a high part was specified, merge it together with the low part. It is
+  // known to pass in the high eightbyte of the result. We do this by forming a
+  // first class struct aggregate with the high and low part: {low, high}
+  if (HighPart)
+    ResType = createPairType(ResType, HighPart);
+
+  return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyReturnType(const Type *RetTy) const {
+  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+  // classification algorithm.
+
+  X86_64ABIInfo::Class Lo, Hi;
+  classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
+
+  // Check some invariants
+  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+  const Type *ResType = nullptr;
+  switch (Lo) {
+  case NoClass:
+    if (Hi == NoClass)
+      return ABIArgInfo::getIgnore();
+    // If the low part is just padding, it takes no register, leave ResType
+    // null.
+    assert((Hi == SSE || Hi == Integer || Hi == X87UP) &&
+           "Unknown missing lo part");
+    break;
+  case SSEUp:
+  case X87UP:
+    llvm_unreachable("Invalid classification for lo word.");
+
+    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+    // hidden argument.
+  case Memory:
+    return getIndirectReturnResult(RetTy);
+
+    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+    // available register of the sequence %rax, %rdx is used.
+  case Integer:
+    ResType = getIntegerTypeAtOffset(RetTy, 0, RetTy, 0);
+    // If we have a sign or zero extended integer, make sure to return Extend
+    // so that the parameter gets the right LLVM IR attributes.
+    if (Hi == NoClass && ResType->isInteger()) {
+      if (const IntegerType *IntTy = dyn_cast<IntegerType>(RetTy)) {
+        if (isPromotableInteger(IntTy)) {
+          ABIArgInfo Info = ABIArgInfo::getExtend(RetTy);
+          return Info;
+        }
+      }
+    }
+    if (ResType->isInteger() && ResType->getSizeInBits() == 128) {
+      assert(Hi == Integer);
+      return ABIArgInfo::getDirect(ResType);
+    }
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+    // available SSE register of the sequence %xmm0, %xmm1 is used.
+  case SSE:
+    ResType = getSSETypeAtOffset(RetTy, 0, RetTy, 0);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+    // returned on the X87 stack in %st0 as 80-bit x87 number.
+  case X87:
+    ResType = TB.getFloatType(APFloat::x87DoubleExtended(), Align(16));
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+    // part of the value is returned in %st0 and the imaginary part in
+    // %st1.
+  case Complex_X87:
+    assert(Hi == Complex_X87 && "Unexpected ComplexX87 classification.");
+    {
+      const Type *X87Type =
+          TB.getFloatType(APFloat::x87DoubleExtended(), Align(16));
+      FieldInfo Fields[] = {FieldInfo(X87Type, 0), FieldInfo(X87Type, 128)};
+      ResType =
+          TB.getCoercedRecordType(Fields, TypeSize::getFixed(256), Align(16));
+    }
+    break;
+  }
+
+  const Type *HighPart = nullptr;
+  switch (Hi) {
+    // Memory was handled previously and X87 should
+    // never occur as a hi class.
+  case Memory:
+  case X87:
+    llvm_unreachable("Invalid classification for hi word.");
+
+  case Complex_X87:
+  case NoClass:
+    break;
+
+  case Integer:
+    HighPart = getIntegerTypeAtOffset(RetTy, 8, RetTy, 8);
+    if (Lo == NoClass)
+      return ABIArgInfo::getDirect(HighPart, 8);
+    break;
+
+  case SSE:
+    HighPart = getSSETypeAtOffset(RetTy, 8, RetTy, 8);
+    if (Lo == NoClass)
+      return ABIArgInfo::getDirect(HighPart, 8);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+    // is passed in the next available eightbyte chunk if the last used
+    // vector register.
+    //
+    // SSEUP should always be preceded by SSE, just widen.
+  case SSEUp:
+    assert(Lo == SSE && "Unexpected SSEUp classification.");
+    ResType = getByteVectorType(RetTy);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+    // returned together with the previous X87 value in %st0.
+  case X87UP:
+    // If X87Up is preceded by X87, we don't need to do
+    // anything. However, in some cases with unions it may not be
+    // preceded by X87. In such situations we follow gcc and pass the
+    // extra bits in an SSE reg.
+    if (Lo != X87) {
+      HighPart = getSSETypeAtOffset(RetTy, 8, RetTy, 8);
+      if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+        return ABIArgInfo::getDirect(HighPart, 8);
+    }
+    break;
+  }
+
+  // If a high part was specified, merge it together with the low part.  It is
+  // known to pass in the high eightbyte of the result.  We do this by forming 
a
+  // first class struct aggregate with the high and low part: {low, high}
+  if (HighPart)
+    ResType = createPairType(ResType, HighPart);
+
+  return ABIArgInfo::getDirect(ResType);
+}
+
+///  Given a high and low type that can ideally
+/// be used as elements of a two register pair to pass or return, return a
+/// first class aggregate to represent them.  For example, if the low part of
+/// a by-value argument should be passed as i32* and the high part as float,
+/// return {i32*, float}.
+const Type *X86_64ABIInfo::createPairType(const Type *Lo,
+                                          const Type *Hi) const {
+  // In order to correctly satisfy the ABI, we need to the high part to start
+  // at offset 8.  If the high and low parts we inferred are both 4-byte types
+  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
+  // the second element at offset 8.  Check for this:
+  unsigned LoSize = (unsigned)Lo->getTypeAllocSize();
+  Align HiAlign = Hi->getAlignment();
+  unsigned HiStart = alignTo(LoSize, HiAlign);
+
+  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
+
+  // To handle this, we have to increase the size of the low part so that the
+  // second element will start at an 8 byte offset.  We can't increase the size
+  // of the second element because it might make us access off the end of the
+  // struct.
+  const Type *AdjustedLo = Lo;
+  if (HiStart != 8) {
+    // There are usually two sorts of types the ABI generation code can produce
+    // for the low part of a pair that aren't 8 bytes in size: half, float or
+    // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 
and
+    // NaCl).
+    // Promote these to a larger type.
+    if (Lo->isFloat()) {
+      const FloatType *FT = cast<FloatType>(Lo);
+      if (FT->getSemantics() == &APFloat::IEEEhalf() ||
+          FT->getSemantics() == &APFloat::IEEEsingle() ||
+          FT->getSemantics() == &APFloat::BFloat())
+        AdjustedLo = TB.getFloatType(APFloat::IEEEdouble(), Align(8));
+    }
+    // Promote integers and pointers to i64
+    else if (Lo->isInteger() || Lo->isPointer())
+      AdjustedLo = TB.getIntegerType(64, Align(8), /*Signed=*/false);
+    else
+      assert((Lo->isInteger() || Lo->isPointer()) &&
+             "Invalid/unknown low type in pair");
+    unsigned AdjustedLoSize = AdjustedLo->getSizeInBits().getFixedValue() / 8;
+    HiStart = alignTo(AdjustedLoSize, HiAlign);
+  }
+
+  // Create the pair struct
+  FieldInfo Fields[] = {FieldInfo(AdjustedLo, 0), FieldInfo(Hi, HiStart * 8)};
+
+  // Verify the high part is at offset 8
+  assert((8 * 8) == Fields[1].OffsetInBits &&
+         "High part must be at offset 8 bytes");
+
+  return TB.getCoercedRecordType(Fields, TypeSize::getFixed(128), Align(8),
+                                 StructPacking::Default);
+}
+
+static bool bitsContainNoUserData(const Type *Ty, unsigned StartBit,
+                                  unsigned EndBit) {
+  // If range is completely beyond type size, it's definitely padding
+  unsigned TySize = Ty->getSizeInBits().getFixedValue();
+  if (TySize <= StartBit)
+    return true;
+
+  // Handle arrays - check each element
+  if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+    const Type *EltTy = AT->getElementType();
+    unsigned EltSize = EltTy->getSizeInBits().getFixedValue();
+
+    for (unsigned I = 0; I < AT->getNumElements(); ++I) {
+      unsigned EltOffset = I * EltSize;
+      if (EltOffset >= EndBit)
+        break;
+
+      unsigned EltStart = (EltOffset < StartBit) ? StartBit - EltOffset : 0;
+      if (!bitsContainNoUserData(EltTy, EltStart, EndBit - EltOffset))
+        return false;
+    }
+    return true;
+  }
+
+  // Handle structs - check all fields and base classes
+  if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
+    if (RT->isUnion()) {
+      for (const auto &Field : RT->getFields()) {
+        if (Field.IsUnnamedBitfield)
+          continue;
+
+        unsigned FieldStart =
+            (Field.OffsetInBits < StartBit) ? StartBit - Field.OffsetInBits : 
0;
+        unsigned FieldEnd =
+            FieldStart + Field.FieldType->getSizeInBits().getFixedValue();
+
+        // Check if field overlaps with the queried range
+        if (FieldStart < EndBit && FieldEnd > StartBit) {
+          // There's an overlap, so there is user data
+          unsigned RelativeStart =
+              (StartBit > FieldStart) ? StartBit - FieldStart : 0;
+          unsigned RelativeEnd =
+              (EndBit < FieldEnd)
+                  ? EndBit - FieldStart
+                  : Field.FieldType->getSizeInBits().getFixedValue();
+
+          if (!bitsContainNoUserData(Field.FieldType, RelativeStart,
+                                     RelativeEnd)) {
+            return false;
+          }
+        }
+      }
+      return true;
+    }
+    // Check base classes first (for C++ records)
+    if (RT->isCXXRecord()) {
+      for (unsigned I = 0; I < RT->getNumBaseClasses(); ++I) {
+        const FieldInfo &Base = RT->getBaseClasses()[I];
+        if (Base.OffsetInBits >= EndBit)
+          continue;
+
+        unsigned BaseStart =
+            (Base.OffsetInBits < StartBit) ? StartBit - Base.OffsetInBits : 0;
+        if (!bitsContainNoUserData(Base.FieldType, BaseStart,
+                                   EndBit - Base.OffsetInBits))
+          return false;
+      }
+    }
+
+    for (unsigned I = 0; I < RT->getNumFields(); ++I) {
+      const FieldInfo &Field = RT->getFields()[I];
+      if (Field.OffsetInBits >= EndBit)
+        break;
+
+      unsigned FieldStart =
+          (Field.OffsetInBits < StartBit) ? StartBit - Field.OffsetInBits : 0;
+      if (!bitsContainNoUserData(Field.FieldType, FieldStart,
+                                 EndBit - Field.OffsetInBits))
+        return false;
+    }
+    return true;
+  }
+
+  // For unions, vectors, and primitives - assume all bits are user data
+  return false;
+}
+
+const Type *X86_64ABIInfo::getIntegerTypeAtOffset(const Type *ABIType,
+                                                  unsigned ABIOffset,
+                                                  const Type *SourceTy,
+                                                  unsigned SourceOffset,
+                                                  bool InMemory) const {
+
+  const Type *WorkingType = ABIType;
+  if (InMemory && ABIType->isInteger()) {
+    const auto *IT = cast<IntegerType>(ABIType);
+    unsigned OriginalBitWidth = IT->getSizeInBits().getFixedValue();
+
+    unsigned WidenedBitWidth = OriginalBitWidth;
+    if (OriginalBitWidth <= 8) {
+      WidenedBitWidth = 8;
+    } else {
+      WidenedBitWidth = llvm::bit_ceil(OriginalBitWidth);
+    }
+
+    if (WidenedBitWidth != OriginalBitWidth) {
+      WorkingType = TB.getIntegerType(WidenedBitWidth, ABIType->getAlignment(),
+                                      IT->isSigned());
+    }
+  }
+  // If we're dealing with an un-offset ABI type, then it means that we're
+  // returning an 8-byte unit starting with it. See if we can safely use it.
+  if (ABIOffset == 0) {
+    // Pointers and int64's always fill the 8-byte unit.
+    if ((WorkingType->isPointer() && Has64BitPointers) ||
+        (WorkingType->isInteger() &&
+         cast<IntegerType>(WorkingType)->getSizeInBits() == 64))
+      return ABIType;
+
+    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
+    // goodness in the source type is just tail padding. This is allowed to
+    // kick in for struct {double,int} on the int, but not on
+    // struct{double,int,int} because we wouldn't return the second int. We
+    // have to do this analysis on the source type because we can't depend on
+    // unions being lowered a specific way etc.
+    if ((WorkingType->isInteger() &&
+         (cast<IntegerType>(WorkingType)->getSizeInBits() == 1 ||
+          cast<IntegerType>(WorkingType)->getSizeInBits() == 8 ||
+          cast<IntegerType>(WorkingType)->getSizeInBits() == 16 ||
+          cast<IntegerType>(WorkingType)->getSizeInBits() == 32)) ||
+        (WorkingType->isPointer() && !Has64BitPointers)) {
+
+      unsigned BitWidth = WorkingType->isPointer()
+                              ? 32
+                              : 
cast<IntegerType>(WorkingType)->getSizeInBits();
+
+      if (bitsContainNoUserData(SourceTy, SourceOffset * 8 + BitWidth,
+                                SourceOffset * 8 + 64))
+        return WorkingType;
+    }
+  }
+
+  if (const auto *RTy = dyn_cast<RecordType>(ABIType)) {
+    if (RTy->isUnion()) {
+      const Type *ReducedType = reduceUnionForX8664(RTy, TB);
+      if (ReducedType)
+        return getIntegerTypeAtOffset(ReducedType, ABIOffset, SourceTy,
+                                      SourceOffset, true);
+    }
+    if (const FieldInfo *Element =
+            RTy->getElementContainingOffset(ABIOffset * 8)) {
+
+      unsigned ElementOffsetBytes = Element->OffsetInBits / 8;
+      return getIntegerTypeAtOffset(Element->FieldType,
+                                    ABIOffset - ElementOffsetBytes, SourceTy,
+                                    SourceOffset, true);
+    }
+  }
+
+  if (const auto *ATy = dyn_cast<ArrayType>(ABIType)) {
+    const Type *EltTy = ATy->getElementType();
+    unsigned EltSize = EltTy->getSizeInBits() / 8;
+    if (EltSize > 0) {
+      unsigned EltOffset = (ABIOffset / EltSize) * EltSize;
+      return getIntegerTypeAtOffset(EltTy, ABIOffset - EltOffset, SourceTy,
+                                    SourceOffset, true);
+    }
+  }
+
+  // If we have a 128-bit integer, we can pass it safely using an i128
+  // so we return that
+  if (ABIType->isInteger() && ABIType->getSizeInBits() == 128) {
+    assert(ABIOffset == 0);
+    return ABIType;
+  }
+
+  unsigned TySizeInBytes =
+      llvm::divideCeil(SourceTy->getSizeInBits().getFixedValue(), 8);
+  if (auto *IT = dyn_cast<IntegerType>(SourceTy)) {
+    if (IT->isBitInt())
+      TySizeInBytes =
+          alignTo(SourceTy->getSizeInBits().getFixedValue(), 64) / 8;
+  }
+  assert(TySizeInBytes != SourceOffset && "Empty field?");
+  unsigned AvailableSize = TySizeInBytes - SourceOffset;
+  return TB.getIntegerType(std::min(AvailableSize, 8U) * 8, Align(1), false);
+}
+/// Returns the floating point type at the specified offset within a type, or
+/// nullptr if no floating point type is found at that offset.
+const Type *X86_64ABIInfo::getFPTypeAtOffset(const Type *Ty,
+                                             unsigned Offset) const {
+  // Check for direct match at offset 0
+  if (Offset == 0 && Ty->isFloat())
+    return Ty;
+
+  if (const ComplexType *CT = dyn_cast<ComplexType>(Ty)) {
+    const Type *ElementType = CT->getElementType();
+    unsigned ElementSize = ElementType->getSizeInBits().getFixedValue() / 8;
+
+    if (Offset == 0 || Offset == ElementSize)
+      return ElementType;
+    return nullptr;
+  }
+
+  // Handle struct types by checking each field
+  if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
+    if (const FieldInfo *Element = RT->getElementContainingOffset(Offset * 8)) 
{
+      unsigned ElementOffsetBytes = Element->OffsetInBits / 8;
+      return getFPTypeAtOffset(Element->FieldType, Offset - 
ElementOffsetBytes);
+    }
+  }
+
+  // Handle array types
+  if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+    const Type *EltTy = AT->getElementType();
+    unsigned EltSize = EltTy->getSizeInBits() / 8;
+    unsigned EltIndex = Offset / EltSize;
+
+    return getFPTypeAtOffset(EltTy, Offset - (EltIndex * EltSize));
+  }
+
+  // No floating point type found at this offset
+  return nullptr;
+}
+
+/// Helper to check if a floating point type matches specific semantics
+static bool isFloatTypeWithSemantics(const Type *Ty,
+                                     const fltSemantics &Semantics) {
+  if (!Ty->isFloat())
+    return false;
+  const FloatType *FT = cast<FloatType>(Ty);
+  return FT->getSemantics() == &Semantics;
+}
+
+/// GetSSETypeAtOffset - Return a type that will be passed by the backend in 
the
+/// low 8 bytes of an XMM register, corresponding to the SSE class.
+const Type *X86_64ABIInfo::getSSETypeAtOffset(const Type *ABIType,
+                                              unsigned ABIOffset,
+                                              const Type *SourceTy,
+                                              unsigned SourceOffset) const {
+
+  if (const auto *RTy = dyn_cast<RecordType>(ABIType)) {
+    if (RTy->isUnion()) {
+      const Type *ReducedType = reduceUnionForX8664(RTy, TB);
+      if (ReducedType) {
+        return getSSETypeAtOffset(ReducedType, ABIOffset, SourceTy,
+                                  SourceOffset);
+      }
+    }
+  }
+
+  auto Is16bitFpTy = [](const Type *T) {
+    return isFloatTypeWithSemantics(T, APFloat::IEEEhalf()) ||
+           isFloatTypeWithSemantics(T, APFloat::BFloat());
+  };
+
+  // Get the floating point type at the requested offset
+  const Type *T0 = getFPTypeAtOffset(ABIType, ABIOffset);
+  if (!T0 || isFloatTypeWithSemantics(T0, APFloat::IEEEdouble()))
+    return TB.getFloatType(APFloat::IEEEdouble(), Align(8));
+
+  // Calculate remaining source size in bytes
+  unsigned SourceSize =
+      (SourceTy->getSizeInBits().getFixedValue() / 8) - SourceOffset;
+
+  // Try to get adjacent FP type
+  const Type *T1 = nullptr;
+  unsigned T0Size =
+      alignTo(T0->getSizeInBits().getFixedValue(), T0->getAlignment().value()) 
/
+      8;
+  if (SourceSize > T0Size)
+    T1 = getFPTypeAtOffset(ABIType, ABIOffset + T0Size);
+
+  if (T1 == nullptr) {
+    if (Is16bitFpTy(T0) && SourceSize > 4)
+      T1 = getFPTypeAtOffset(ABIType, ABIOffset + 4);
+
+    if (T1 == nullptr)
+      return T0;
+  }
+  // Handle vector cases
+  if (isFloatTypeWithSemantics(T0, APFloat::IEEEsingle()) &&
+      isFloatTypeWithSemantics(T1, APFloat::IEEEsingle()))
+    return TB.getVectorType(T0, ElementCount::getFixed(2), Align(8));
+
+  if (Is16bitFpTy(T0) && Is16bitFpTy(T1)) {
+    const Type *T2 = nullptr;
+    if (SourceSize > 4)
+      T2 = getFPTypeAtOffset(ABIType, ABIOffset + 4);
+    if (!T2)
+      return TB.getVectorType(T0, ElementCount::getFixed(2), Align(8));
+    return TB.getVectorType(T0, ElementCount::getFixed(4), Align(8));
+  }
+
+  // Mixed half-float cases
+  if (Is16bitFpTy(T0) || Is16bitFpTy(T1))
+    return TB.getVectorType(TB.getFloatType(APFloat::IEEEhalf(), Align(2)),
+                            ElementCount::getFixed(4), Align(8));
+
+  // Default to double
+  return TB.getFloatType(APFloat::IEEEdouble(), Align(8));
+}
+
+/// The ABI specifies that a value should be passed in a full vector XMM/YMM
+/// register. Pick an LLVM IR type that will be passed as a vector register.
+const Type *X86_64ABIInfo::getByteVectorType(const Type *Ty) const {
+  // Wrapper structs/arrays that only contain vectors are passed just like
+  // vectors; strip them off if present.
+  if (const Type *InnerTy = isSingleElementStruct(Ty))
+    Ty = InnerTy;
+
+  // Handle vector types
+  if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
+    // Don't pass vXi128 vectors in their native type, the backend can't
+    // legalize them.
+    if (getABICompatInfo().Flags.PassInt128VectorsInMem &&
+        VT->getElementType()->isInteger() &&
+        cast<IntegerType>(VT->getElementType())->getSizeInBits() == 128) {
+      unsigned Size = VT->getSizeInBits().getFixedValue();
+      return TB.getVectorType(TB.getIntegerType(64, Align(8), 
/*Signed=*/false),
+                              ElementCount::getFixed(Size / 64),
+                              Align(Size / 8));
+    }
+    return VT;
+  }
+
+  // Handle fp128
+  if (isFloatTypeWithSemantics(Ty, APFloat::IEEEquad()))
+    return Ty;
+
+  // We couldn't find the preferred IR vector type for 'Ty'.
+  unsigned Size = Ty->getSizeInBits().getFixedValue();
+  assert((Size == 128 || Size == 256 || Size == 512) && "Invalid vector size");
+
+  return TB.getVectorType(TB.getFloatType(APFloat::IEEEdouble(), Align(8)),
+                          ElementCount::getFixed(Size / 64), Align(Size / 8));
+}
+
+// Returns the single element if this is a single-element struct wrapper
+const Type *X86_64ABIInfo::isSingleElementStruct(const Type *Ty) const {
+  const auto *RT = dyn_cast<RecordType>(Ty);
+  if (!RT)
+    return nullptr;
+
+  if (RT->isPolymorphic() || RT->hasNonTrivialCopyConstructor() ||
+      RT->hasNonTrivialDestructor() || RT->hasFlexibleArrayMember() ||
+      RT->getNumVirtualBaseClasses() != 0)
+    return nullptr;
----------------
vortex73 wrote:

Hmm maybe... I'll give it a try :)

https://github.com/llvm/llvm-project/pull/140112
_______________________________________________
cfe-commits mailing list
cfe-commits@lists.llvm.org
https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits

Reply via email to