================
@@ -0,0 +1,283 @@
+//===----------------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM 
Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+// This checker uses a 7-step algorithm to accomplish scope analysis of a
+// variable and determine if it's in too large a scope. Note that the
+// clang-tidy framework is aimed mainly at supporting text-manipulation,
+// diagnostics, or common AST patterns. Scope reduction analysis is
+// quite specialized, and there's not much support specifically for
+// those steps. Perhaps someone else knows better and can help simplify
+// this code in a more concrete way other than simply suggesting it can
+// be simpler.
+//
+// The 7-step algorithm used by this checker for scope reduction analysis is:
+// 1) Filter out variables declared in for-loop initializations
+//    - Those variables are already in optimal scope, and can be skipped
+// 2) Collect variable uses
+//    - find all DeclRefExpr nodes that reference the variable
+// 3) Build scope chains
+//    - for each use, find all compound statements that contain it (from
+//      innermost to outermost)
+// 4) Find the innermost compound statement that contains all uses
+//    - This is the smallest scope where the variable could be declared
+// 5) Find declaration scope
+//    - Locate the compound statement containing the variable declaration
+// 6) Verify nesting
+//    - Ensure the usage scope is actually nested within the declaration scope
+// 7) Alternate analysis - check for for-loop initialization opportunity
+//    - This is only run if compound stmt analysis didn't find smaller scope
+//    - Only check local variables, not parameters
+//    - Determine if all uses are within the same for-loop and suggest
+//      for-loop initialization
+//
+// The algo works by finding the smallest scope that could contain the variable
+// declaration while still encompassing all it's uses.
+
+#include "ScopeReductionCheck.h"
+#include "clang/ASTMatchers/ASTMatchFinder.h"
+
+using namespace clang::ast_matchers;
+
+namespace clang::tidy::misc {
+
+// TODO: Try using utils::decl_ref_expr::allDeclRefExprs here.
+static void
+collectVariableUses(const Stmt *S, const VarDecl *Var,
+                    llvm::SmallVector<const DeclRefExpr *, 8> &Uses) {
+  if (!S)
+    return;
+
+  if (const auto *DRE = dyn_cast<DeclRefExpr>(S)) {
+    if (DRE->getDecl() == Var)
+      Uses.push_back(DRE);
+  }
+
+  for (const Stmt *Child : S->children())
+    collectVariableUses(Child, Var, Uses);
+}
+
+void ScopeReductionCheck::registerMatchers(MatchFinder *Finder) {
+  // TODO: Try adding unless(hasParent(declStmt(hasParent(forStmt( to matcher
+  //       to simplify check code.
+  Finder->addMatcher(varDecl(hasLocalStorage()).bind("var"), this);
+}
+
+void ScopeReductionCheck::check(
+    const ast_matchers::MatchFinder::MatchResult &Result) {
+  const auto *Var = Result.Nodes.getNodeAs<VarDecl>("var");
+  if (!Var)
+    return;
+
+  // Step 1: Filter out variables declared in for-loop initializations
+  // These variables are already in their optimal scope and shouldn't be
+  // analyzed
+  auto &Parents = Result.Context->getParentMapContext();
+  auto ParentNodes = Parents.getParents(DynTypedNode::create(*Var));
+
+  if (!ParentNodes.empty()) {
+    if (const auto *Parent = ParentNodes[0].get<Stmt>()) {
+      if (isa<DeclStmt>(Parent)) {
+        // Check if DeclStmt's parent is ForStmt
+        auto GrandParentNodes = Parents.getParents(*Parent);
+        if (!GrandParentNodes.empty()) {
+          if (const auto *GrandParent = GrandParentNodes[0].get<Stmt>()) {
+            if (isa<ForStmt>(GrandParent))
+              return; // Skip for-loop declared variables
+          }
+        }
+      }
+    }
+  }
+
+  // auto *Context = Result.Context;
+  auto *Function = dyn_cast<FunctionDecl>(Var->getDeclContext());
+  if (!Function || !Function->hasBody())
+    return;
+
+  // Step 2: Collect all uses of this variable within the function
+  llvm::SmallVector<const DeclRefExpr *, 8> Uses;
+  collectVariableUses(Function->getBody(), Var, Uses);
+
+  // No uses, return with no diagnostics
+  if (Uses.empty())
+    return;
+
+  // Step 3: For each variable use, find all compound statements that contain 
it
+  // This builds a "scope chain" from innermost to outermost for each use
+  const CompoundStmt *InnermostScope = nullptr;
+
+  // For each use, find all compound statements that contain it
+  llvm::SmallVector<llvm::SmallVector<const CompoundStmt *, 4>, 8>
+      UseScopeChains;
+
+  for (const auto *Use : Uses) {
+    llvm::SmallVector<const CompoundStmt *, 4> ScopeChain;
+    const Stmt *Current = Use;
+
+    // Walk up the AST from this use to fins all containing compound stmts
+    while (Current) {
+      auto ParentNodes = Parents.getParents(*Current);
+      if (ParentNodes.empty())
+        break;
+
+      const Stmt *Parent = ParentNodes[0].get<Stmt>();
+      if (!Parent) {
+        // Try to get Decl parent and continue from there
+        if (const auto *DeclParent = ParentNodes[0].get<Decl>()) {
+          auto DeclParentNodes = Parents.getParents(*DeclParent);
+          if (!DeclParentNodes.empty())
+            Parent = DeclParentNodes[0].get<Stmt>();
+        }
+        if (!Parent)
+          break;
+      }
+
+      if (const auto *CS = dyn_cast<CompoundStmt>(Parent))
+        ScopeChain.push_back(CS);
+
+      Current = Parent;
+    }
+
+    if (!ScopeChain.empty())
+      UseScopeChains.push_back(ScopeChain);
+  }
+
+  // Step 4: Find the innermost scope that contains all uses
+  //         This is the smallest scope where var could be declared
+  if (!UseScopeChains.empty()) {
+    // Start with first use's innermost scope
+    InnermostScope = UseScopeChains[0][0];
+
+    // For each subsequent use, find common ancestor scope
+    for (const auto &ScopeChain : llvm::drop_begin(UseScopeChains)) {
+      const CompoundStmt *CommonScope = nullptr;
+
+      // Find first scope that appears in both chains (common ancestor)
+      for (const auto *Scope1 : UseScopeChains[0]) {
+        for (const auto *Scope2 : ScopeChain) {
+          if (Scope1 == Scope2) {
+            CommonScope = Scope1;
+            break;
+          }
+        }
+        if (CommonScope)
+          break;
+      }
+
+      if (CommonScope)
+        InnermostScope = CommonScope;
+    }
+  }
+
+  // Step 5: Check if current var declaration is broader than necessary
+  if (InnermostScope) {
+    // Find the compound statement containing the variable declaration
+    const DynTypedNode Current = DynTypedNode::create(*Var);
+    const CompoundStmt *VarScope = nullptr;
+
+    auto ParentNodes = Parents.getParents(Current);
+    while (!ParentNodes.empty()) {
+      const Stmt *Parent = ParentNodes[0].get<Stmt>();
+      if (!Parent)
+        break;
+
+      if (const auto *CS = dyn_cast<CompoundStmt>(Parent)) {
+        VarScope = CS;
+        break;
+      }
+      ParentNodes = Parents.getParents(*Parent);
+    }
+
+    // Step 6: Verify that usage scope is nested within decl scope
+    if (VarScope && VarScope != InnermostScope) {
+      // Walk up from innermost usage to see if the decl scope is reached
+      const Stmt *CheckScope = InnermostScope;
+      bool IsNested = false;
+
+      while (CheckScope) {
+        auto CheckParents = Parents.getParents(*CheckScope);
+        if (CheckParents.empty())
+          break;
+
+        const Stmt *CheckParent = CheckParents[0].get<Stmt>();
+        if (CheckParent == VarScope) {
+          IsNested = true;
+          break;
+        }
+        CheckScope = CheckParent;
+      }
+
+      // Only report if the usage scope is truly nested within the decl scope
+      if (IsNested) {
+        diag(Var->getLocation(),
+             "variable '%0' can be declared in a smaller scope")
+            << Var->getName();
+        return; // early exit
+      }
+    }
+  }
+
+  // Step 7: Alternative analysis - check for for-loop initialization
+  // opportunity This only runs if the compound statement analysis didn't find 
a
+  // smaller scope Only check local variables, not parameters
+  if (!isa<ParmVarDecl>(Var)) {
----------------
vabridgers wrote:

As implemented yes, the case came up when implementing scope reduction analysis 
for for-loops as an alternative to the main analysis. But I believe parameters 
should be excluded for all cases. Your thoughts?

https://github.com/llvm/llvm-project/pull/175429
_______________________________________________
cfe-commits mailing list
[email protected]
https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits

Reply via email to