arsenm updated this revision to Diff 110272.
arsenm added a comment.

Fix assert when estimating array registers


https://reviews.llvm.org/D36171

Files:
  lib/CodeGen/TargetInfo.cpp
  test/CodeGenOpenCL/addr-space-struct-arg.cl
  test/CodeGenOpenCL/amdgpu-abi-struct-coerce.cl
  test/CodeGenOpenCL/amdgpu-nullptr.cl

Index: test/CodeGenOpenCL/amdgpu-nullptr.cl
===================================================================
--- test/CodeGenOpenCL/amdgpu-nullptr.cl
+++ test/CodeGenOpenCL/amdgpu-nullptr.cl
@@ -511,9 +511,9 @@
 
 // CHECK-LABEL: test_memset_private
 // CHECK: call void @llvm.memset.p0i8.i64(i8* nonnull {{.*}}, i8 0, i64 40, i32 8, i1 false)
-StructTy3 test_memset_private(void) {
+void test_memset_private(private StructTy3 *ptr) {
   StructTy3 S3 = {0, 0, 0, 0, 0};
-  return S3;
+  *ptr = S3;
 }
 
 // Test casting literal 0 to pointer.
Index: test/CodeGenOpenCL/amdgpu-abi-struct-coerce.cl
===================================================================
--- test/CodeGenOpenCL/amdgpu-abi-struct-coerce.cl
+++ test/CodeGenOpenCL/amdgpu-abi-struct-coerce.cl
@@ -2,20 +2,52 @@
 // RUN: %clang_cc1 -triple amdgcn-unknown-unknown -S -emit-llvm -o - %s | FileCheck %s
 // RUN: %clang_cc1 -triple r600-unknown-unknown -S -emit-llvm -o - %s | FileCheck %s
 
-// CHECK-NOT: %struct.single_element_struct_arg = type { i32 }
+typedef __attribute__(( ext_vector_type(2) )) char char2;
+typedef __attribute__(( ext_vector_type(3) )) char char3;
+typedef __attribute__(( ext_vector_type(4) )) char char4;
+
+typedef __attribute__(( ext_vector_type(2) )) short short2;
+typedef __attribute__(( ext_vector_type(3) )) short short3;
+typedef __attribute__(( ext_vector_type(4) )) short short4;
+
+typedef __attribute__(( ext_vector_type(2) )) int int2;
+typedef __attribute__(( ext_vector_type(3) )) int int3;
+typedef __attribute__(( ext_vector_type(4) )) int int4;
+typedef __attribute__(( ext_vector_type(16) )) int int16;
+typedef __attribute__(( ext_vector_type(32) )) int int32;
+
+// CHECK: %struct.empty_struct = type {}
+typedef struct empty_struct
+{
+} empty_struct;
+
+// CHECK-NOT: %struct.single_element_struct_arg
 typedef struct single_element_struct_arg
 {
     int i;
 } single_element_struct_arg_t;
 
+// CHECK-NOT: %struct.nested_single_element_struct_arg
+typedef struct nested_single_element_struct_arg
+{
+  single_element_struct_arg_t i;
+} nested_single_element_struct_arg_t;
+
 // CHECK: %struct.struct_arg = type { i32, float, i32 }
 typedef struct struct_arg
 {
     int i1;
     float f;
     int i2;
 } struct_arg_t;
 
+// CHECK: %struct.struct_padding_arg = type { i8, i64 }
+typedef struct struct_padding_arg
+{
+  char i1;
+  long f;
+} struct_padding_arg;
+
 // CHECK: %struct.struct_of_arrays_arg = type { [2 x i32], float, [4 x i32], [3 x float], i32 }
 typedef struct struct_of_arrays_arg
 {
@@ -35,33 +67,457 @@
     int i2;
 } struct_of_structs_arg_t;
 
-// CHECK-LABEL: @test_single_element_struct_arg
-// CHECK: i32 %arg1.coerce
-__kernel void test_single_element_struct_arg(single_element_struct_arg_t arg1)
+// CHECK: %union.transparent_u = type { i32 }
+typedef union
 {
+  int b1;
+  float b2;
+} transparent_u __attribute__((__transparent_union__));
+
+// CHECK: %struct.single_array_element_struct_arg = type { [4 x i32] }
+typedef struct single_array_element_struct_arg
+{
+    int i[4];
+} single_array_element_struct_arg_t;
+
+// CHECK: %struct.single_struct_element_struct_arg = type { %struct.inner }
+// CHECK: %struct.inner = type { i32, i64 }
+typedef struct single_struct_element_struct_arg
+{
+  struct inner {
+    int a;
+    long b;
+  } s;
+} single_struct_element_struct_arg_t;
+
+// CHECK: %struct.different_size_type_pair
+typedef struct different_size_type_pair {
+  long l;
+  int i;
+} different_size_type_pair;
+
+// CHECK: %struct.flexible_array = type { i32, [0 x i32] }
+typedef struct flexible_array
+{
+  int i;
+  int flexible[];
+} flexible_array;
+
+// CHECK: %struct.struct_arr16 = type { [16 x i32] }
+typedef struct struct_arr16
+{
+    int arr[16];
+} struct_arr16;
+
+// CHECK: %struct.struct_arr32 = type { [32 x i32] }
+typedef struct struct_arr32
+{
+    int arr[32];
+} struct_arr32;
+
+// CHECK: %struct.struct_arr33 = type { [33 x i32] }
+typedef struct struct_arr33
+{
+    int arr[33];
+} struct_arr33;
+
+// CHECK: %struct.struct_char_arr32 = type { [32 x i8] }
+typedef struct struct_char_arr32
+{
+  char arr[32];
+} struct_char_arr32;
+
+// CHECK-NOT: %struct.struct_char_x8
+typedef struct struct_char_x8 {
+  char x, y, z, w;
+  char a, b, c, d;
+} struct_char_x8;
+
+// CHECK-NOT: %struct.struct_char_x4
+typedef struct struct_char_x4 {
+  char x, y, z, w;
+} struct_char_x4;
+
+// CHECK-NOT: %struct.struct_char_x3
+typedef struct struct_char_x3 {
+  char x, y, z;
+} struct_char_x3;
+
+// CHECK-NOT: %struct.struct_char_x2
+typedef struct struct_char_x2 {
+  char x, y;
+} struct_char_x2;
+
+// CHECK-NOT: %struct.struct_char_x1
+typedef struct struct_char_x1 {
+  char x;
+} struct_char_x1;
+
+// 4 registers from fields, 5 if padding included.
+// CHECK: %struct.nested = type { i8, i64 }
+// CHECK: %struct.num_regs_nested_struct = type { i32, %struct.nested }
+typedef struct num_regs_nested_struct {
+  int x;
+  struct nested {
+    char z;
+    long y;
+  } inner;
+} num_regs_nested_struct;
+
+// CHECK: %struct.double_nested = type { %struct.inner_inner }
+// CHECK: %struct.inner_inner = type { i8, i32, i8 }
+// CHECK: %struct.double_nested_struct = type { i32, %struct.double_nested, i16 }
+typedef struct double_nested_struct {
+  int x;
+  struct double_nested {
+    struct inner_inner {
+      char y;
+      int q;
+      char z;
+    } inner_inner;
+  } inner;
+
+  short w;
+} double_nested_struct;
+
+// This is a large struct, but uses fewer registers than the limit.
+// CHECK: %struct.large_struct_padding = type { i8, i32, i8, i32, i8, i8, i16, i16, [3 x i8], i64, i32, i8, i32, i16, i8 }
+typedef struct large_struct_padding {
+  char e0;
+  int e1;
+  char e2;
+  int e3;
+  char e4;
+  char e5;
+  short e6;
+  short e7;
+  char e8[3];
+  long e9;
+  int e10;
+  char e11;
+  int e12;
+  short e13;
+  char e14;
+} large_struct_padding;
+
+// CHECK: %struct.int3_pair = type { <3 x i32>, <3 x i32> }
+// The number of registers computed should be 6, not 8.
+typedef struct int3_pair {
+	int3 dx;
+	int3 dy;
+} int3_pair;
+
+// CHECK: %struct.struct_4regs = type { i32, i32, i32, i32 }
+typedef struct struct_4regs
+{
+  int x;
+  int y;
+  int z;
+  int w;
+} struct_4regs;
+
+// CHECK: void @kernel_empty_struct_arg(%struct.empty_struct %s.coerce)
+__kernel void kernel_empty_struct_arg(empty_struct s) { }
+
+// CHECK: void @kernel_single_element_struct_arg(i32 %arg1.coerce)
+__kernel void kernel_single_element_struct_arg(single_element_struct_arg_t arg1) { }
+
+// CHECK: void @kernel_nested_single_element_struct_arg(i32 %arg1.coerce)
+__kernel void kernel_nested_single_element_struct_arg(nested_single_element_struct_arg_t arg1) { }
+
+// CHECK: void @kernel_struct_arg(%struct.struct_arg %arg1.coerce)
+__kernel void kernel_struct_arg(struct_arg_t arg1) { }
+
+// CHECK: void @kernel_struct_padding_arg(%struct.struct_padding_arg %arg1.coerce)
+__kernel void kernel_struct_padding_arg(struct_padding_arg arg1) { }
+
+// CHECK: void @kernel_test_struct_of_arrays_arg(%struct.struct_of_arrays_arg %arg1.coerce)
+__kernel void kernel_test_struct_of_arrays_arg(struct_of_arrays_arg_t arg1) { }
+
+// CHECK: void @kernel_struct_of_structs_arg(%struct.struct_of_structs_arg %arg1.coerce)
+__kernel void kernel_struct_of_structs_arg(struct_of_structs_arg_t arg1) { }
+
+// CHECK: void @test_kernel_transparent_union_arg(%union.transparent_u %u.coerce)
+__kernel void test_kernel_transparent_union_arg(transparent_u u) { }
+
+// CHECK: void @kernel_single_array_element_struct_arg(%struct.single_array_element_struct_arg %arg1.coerce)
+__kernel void kernel_single_array_element_struct_arg(single_array_element_struct_arg_t arg1) { }
+
+// CHECK: void @kernel_single_struct_element_struct_arg(%struct.single_struct_element_struct_arg %arg1.coerce)
+__kernel void kernel_single_struct_element_struct_arg(single_struct_element_struct_arg_t arg1) { }
+
+// CHECK: void @kernel_different_size_type_pair_arg(%struct.different_size_type_pair %arg1.coerce)
+__kernel void kernel_different_size_type_pair_arg(different_size_type_pair arg1) { }
+
+// CHECK: define void @func_f32_arg(float %arg)
+void func_f32_arg(float arg) { }
+
+// CHECK: define void @func_v2i16_arg(<2 x i16> %arg)
+void func_v2i16_arg(short2 arg) { }
+
+// CHECK: define void @func_v3i32_arg(<3 x i32> %arg)
+void func_v3i32_arg(int3 arg) { }
+
+// CHECK: define void @func_v4i32_arg(<4 x i32> %arg)
+void func_v4i32_arg(int4 arg) { }
+
+// CHECK: define void @func_v16i32_arg(<16 x i32> %arg)
+void func_v16i32_arg(int16 arg) { }
+
+// CHECK: define void @func_v32i32_arg(<32 x i32> %arg)
+void func_v32i32_arg(int32 arg) { }
+
+// CHECK: define void @func_empty_struct_arg()
+void func_empty_struct_arg(empty_struct empty) { }
+
+// CHECK: void @func_single_element_struct_arg(i32 %arg1.coerce)
+void func_single_element_struct_arg(single_element_struct_arg_t arg1) { }
+
+// CHECK: void @func_nested_single_element_struct_arg(i32 %arg1.coerce)
+void func_nested_single_element_struct_arg(nested_single_element_struct_arg_t arg1) { }
+
+// CHECK: void @func_struct_arg(i32 %arg1.coerce0, float %arg1.coerce1, i32 %arg1.coerce2)
+void func_struct_arg(struct_arg_t arg1) { }
+
+// CHECK: void @func_struct_padding_arg(i8 %arg1.coerce0, i64 %arg1.coerce1)
+void func_struct_padding_arg(struct_padding_arg arg1) { }
+
+// CHECK: define void @func_struct_char_x8([2 x i32] %arg.coerce)
+void func_struct_char_x8(struct_char_x8 arg) { }
+
+// CHECK: define void @func_struct_char_x4(i32 %arg.coerce)
+void func_struct_char_x4(struct_char_x4 arg) { }
+
+// CHECK: define void @func_struct_char_x3(i32 %arg.coerce)
+void func_struct_char_x3(struct_char_x3 arg) { }
+
+// CHECK: define void @func_struct_char_x2(i16 %arg.coerce)
+void func_struct_char_x2(struct_char_x2 arg) { }
+
+// CHECK: define void @func_struct_char_x1(i8 %arg.coerce)
+void func_struct_char_x1(struct_char_x1 arg) { }
+
+// CHECK: void @func_transparent_union_arg(i32 %u.coerce)
+void func_transparent_union_arg(transparent_u u) { }
+
+// CHECK: void @func_single_array_element_struct_arg([4 x i32] %arg1.coerce)
+void func_single_array_element_struct_arg(single_array_element_struct_arg_t arg1) { }
+
+// CHECK: void @func_single_struct_element_struct_arg(%struct.inner %arg1.coerce)
+void func_single_struct_element_struct_arg(single_struct_element_struct_arg_t arg1) { }
+
+// CHECK: void @func_different_size_type_pair_arg(i64 %arg1.coerce0, i32 %arg1.coerce1)
+void func_different_size_type_pair_arg(different_size_type_pair arg1) { }
+
+// CHECK: void @func_flexible_array_arg(%struct.flexible_array* byval nocapture align 4 %arg)
+void func_flexible_array_arg(flexible_array arg) { }
+
+// CHECK: define float @func_f32_ret()
+float func_f32_ret()
+{
+  return 0.0f;
+}
+
+// CHECK: define void @func_empty_struct_ret()
+empty_struct func_empty_struct_ret()
+{
+  empty_struct s = {};
+  return s;
+}
+
+// CHECK: define i32 @single_element_struct_ret()
+// CHECK: ret i32 0
+single_element_struct_arg_t single_element_struct_ret()
+{
+  single_element_struct_arg_t s = { 0 };
+  return s;
+}
+
+// CHECK: define i32 @nested_single_element_struct_ret()
+// CHECK: ret i32 0
+nested_single_element_struct_arg_t nested_single_element_struct_ret()
+{
+  nested_single_element_struct_arg_t s = { 0 };
+  return s;
+}
+
+// CHECK: define %struct.struct_arg @func_struct_ret()
+// CHECK: ret %struct.struct_arg zeroinitializer
+struct_arg_t func_struct_ret()
+{
+  struct_arg_t s = { 0 };
+  return s;
+}
+
+// CHECK: define %struct.struct_padding_arg @func_struct_padding_ret()
+// CHECK: ret %struct.struct_padding_arg zeroinitializer
+struct_padding_arg func_struct_padding_ret()
+{
+  struct_padding_arg s = { 0 };
+  return s;
+}
+
+// CHECK: define [2 x i32] @func_struct_char_x8_ret()
+// CHECK: ret [2 x i32] zeroinitializer
+struct_char_x8 func_struct_char_x8_ret()
+{
+  struct_char_x8 s = { 0 };
+  return s;
+}
+
+// CHECK: define i32 @func_struct_char_x4_ret()
+// CHECK: ret i32 0
+struct_char_x4 func_struct_char_x4_ret()
+{
+  struct_char_x4 s = { 0 };
+  return s;
+}
+
+// CHECK: define i32 @func_struct_char_x3_ret()
+// CHECK: ret i32 0
+struct_char_x3 func_struct_char_x3_ret()
+{
+  struct_char_x3 s = { 0 };
+  return s;
+}
+
+// CHECK: define i16 @func_struct_char_x2_ret()
+struct_char_x2 func_struct_char_x2_ret()
+{
+  struct_char_x2 s = { 0 };
+  return s;
 }
 
-// CHECK-LABEL: @test_struct_arg
-// CHECK: %struct.struct_arg %arg1.coerce
-__kernel void test_struct_arg(struct_arg_t arg1)
+// CHECK: define i8 @func_struct_char_x1_ret()
+// CHECK: ret i8 0
+struct_char_x1 func_struct_char_x1_ret()
 {
+  struct_char_x1 s = { 0 };
+  return s;
 }
 
-// CHECK-LABEL: @test_struct_of_arrays_arg
-// CHECK: %struct.struct_of_arrays_arg %arg1.coerce
-__kernel void test_struct_of_arrays_arg(struct_of_arrays_arg_t arg1)
+// CHECK: define %struct.struct_arr16 @func_ret_struct_arr16()
+// CHECK: ret %struct.struct_arr16 zeroinitializer
+struct_arr16 func_ret_struct_arr16()
 {
+  struct_arr16 s = { 0 };
+  return s;
 }
 
-// CHECK-LABEL: @test_struct_of_structs_arg
-// CHECK: %struct.struct_of_structs_arg %arg1.coerce
-__kernel void test_struct_of_structs_arg(struct_of_structs_arg_t arg1)
+// CHECK: define void @func_ret_struct_arr32(%struct.struct_arr32* noalias nocapture sret %agg.result)
+struct_arr32 func_ret_struct_arr32()
 {
+  struct_arr32 s = { 0 };
+  return s;
 }
 
-// CHECK-LABEL: @test_non_kernel_struct_arg
-// CHECK-NOT: %struct.struct_arg %arg1.coerce
-// CHECK: %struct.struct_arg* byval
-void test_non_kernel_struct_arg(struct_arg_t arg1)
+// CHECK: define void @func_ret_struct_arr33(%struct.struct_arr33* noalias nocapture sret %agg.result)
+struct_arr33 func_ret_struct_arr33()
 {
+  struct_arr33 s = { 0 };
+  return s;
 }
+
+// CHECK: define %struct.struct_char_arr32 @func_ret_struct_char_arr32()
+struct_char_arr32 func_ret_struct_char_arr32()
+{
+  struct_char_arr32 s = { 0 };
+  return s;
+}
+
+// CHECK: define i32 @func_transparent_union_ret() local_unnamed_addr #0 {
+// CHECK: ret i32 0
+transparent_u func_transparent_union_ret()
+{
+  transparent_u u = { 0 };
+  return u;
+}
+
+// CHECK: define %struct.different_size_type_pair @func_different_size_type_pair_ret()
+different_size_type_pair func_different_size_type_pair_ret()
+{
+  different_size_type_pair s = { 0 };
+  return s;
+}
+
+// CHECK: define void @func_flexible_array_ret(%struct.flexible_array* noalias nocapture sret %agg.result)
+flexible_array func_flexible_array_ret()
+{
+  flexible_array s = { 0 };
+  return s;
+}
+
+// CHECK: define void @func_reg_state_lo(<4 x i32> %arg0, <4 x i32> %arg1, <4 x i32> %arg2, i32 %arg3, i32 %s.coerce0, float %s.coerce1, i32 %s.coerce2)
+void func_reg_state_lo(int4 arg0, int4 arg1, int4 arg2, int arg3, struct_arg_t s) { }
+
+// CHECK: define void @func_reg_state_hi(<4 x i32> %arg0, <4 x i32> %arg1, <4 x i32> %arg2, i32 %arg3, i32 %arg4, %struct.struct_arg* byval nocapture align 4 %s)
+void func_reg_state_hi(int4 arg0, int4 arg1, int4 arg2, int arg3, int arg4, struct_arg_t s) { }
+
+// XXX - Why don't the inner structs flatten?
+// CHECK: define void @func_reg_state_num_regs_nested_struct(<4 x i32> %arg0, i32 %arg1, i32 %arg2.coerce0, %struct.nested %arg2.coerce1, i32 %arg3.coerce0, %struct.nested %arg3.coerce1, %struct.num_regs_nested_struct* byval nocapture align 8 %arg4)
+void func_reg_state_num_regs_nested_struct(int4 arg0, int arg1, num_regs_nested_struct arg2, num_regs_nested_struct arg3, num_regs_nested_struct arg4) { }
+
+// CHECK: define void @func_double_nested_struct_arg(<4 x i32> %arg0, i32 %arg1, i32 %arg2.coerce0, %struct.double_nested %arg2.coerce1, i16 %arg2.coerce2)
+void func_double_nested_struct_arg(int4 arg0, int arg1, double_nested_struct arg2) { }
+
+// CHECK: define %struct.double_nested_struct @func_double_nested_struct_ret(<4 x i32> %arg0, i32 %arg1)
+double_nested_struct func_double_nested_struct_ret(int4 arg0, int arg1) {
+  double_nested_struct s = { 0 };
+  return s;
+}
+
+// CHECK: define void @func_large_struct_padding_arg_direct(i8 %arg.coerce0, i32 %arg.coerce1, i8 %arg.coerce2, i32 %arg.coerce3, i8 %arg.coerce4, i8 %arg.coerce5, i16 %arg.coerce6, i16 %arg.coerce7, [3 x i8] %arg.coerce8, i64 %arg.coerce9, i32 %arg.coerce10, i8 %arg.coerce11, i32 %arg.coerce12, i16 %arg.coerce13, i8 %arg.coerce14)
+void func_large_struct_padding_arg_direct(large_struct_padding arg) { }
+
+// CHECK: define void @func_large_struct_padding_arg_store(%struct.large_struct_padding addrspace(1)* nocapture %out, %struct.large_struct_padding* byval nocapture readonly align 8 %arg)
+void func_large_struct_padding_arg_store(global large_struct_padding* out, large_struct_padding arg) {
+  *out = arg;
+}
+
+// CHECK: define void @v3i32_reg_count(<3 x i32> %arg1, <3 x i32> %arg2, <3 x i32> %arg3, <3 x i32> %arg4, i32 %arg5.coerce0, float %arg5.coerce1, i32 %arg5.coerce2)
+void v3i32_reg_count(int3 arg1, int3 arg2, int3 arg3, int3 arg4, struct_arg_t arg5) { }
+
+// Function signature from blender, nothing should be passed byval. The v3i32
+// should not count as 4 passed registers.
+// CHECK: define void @v3i32_pair_reg_count(%struct.int3_pair* nocapture %arg0, <3 x i32> %arg1.coerce0, <3 x i32> %arg1.coerce1, <3 x i32> %arg2, <3 x i32> %arg3.coerce0, <3 x i32> %arg3.coerce1, <3 x i32> %arg4, float %arg5)
+void v3i32_pair_reg_count(int3_pair *arg0, int3_pair arg1, int3 arg2, int3_pair arg3, int3 arg4, float arg5) { }
+
+// Each short4 should fit pack into 2 registers.
+// CHECK: define void @v4i16_reg_count(<4 x i16> %arg0, <4 x i16> %arg1, <4 x i16> %arg2, <4 x i16> %arg3, <4 x i16> %arg4, <4 x i16> %arg5, i32 %arg6.coerce0, i32 %arg6.coerce1, i32 %arg6.coerce2, i32 %arg6.coerce3)
+void v4i16_reg_count(short4 arg0, short4 arg1, short4 arg2, short4 arg3,
+                     short4 arg4, short4 arg5, struct_4regs arg6) { }
+
+// CHECK: define void @v4i16_pair_reg_count_over(<4 x i16> %arg0, <4 x i16> %arg1, <4 x i16> %arg2, <4 x i16> %arg3, <4 x i16> %arg4, <4 x i16> %arg5, <4 x i16> %arg6, %struct.struct_4regs* byval nocapture align 4 %arg7)
+void v4i16_pair_reg_count_over(short4 arg0, short4 arg1, short4 arg2, short4 arg3,
+                               short4 arg4, short4 arg5, short4 arg6, struct_4regs arg7) { }
+
+// CHECK: define void @v3i16_reg_count(<3 x i16> %arg0, <3 x i16> %arg1, <3 x i16> %arg2, <3 x i16> %arg3, <3 x i16> %arg4, <3 x i16> %arg5, i32 %arg6.coerce0, i32 %arg6.coerce1, i32 %arg6.coerce2, i32 %arg6.coerce3)
+void v3i16_reg_count(short3 arg0, short3 arg1, short3 arg2, short3 arg3,
+                     short3 arg4, short3 arg5, struct_4regs arg6) { }
+
+// CHECK: define void @v3i16_reg_count_over(<3 x i16> %arg0, <3 x i16> %arg1, <3 x i16> %arg2, <3 x i16> %arg3, <3 x i16> %arg4, <3 x i16> %arg5, <3 x i16> %arg6, %struct.struct_4regs* byval nocapture align 4 %arg7)
+void v3i16_reg_count_over(short3 arg0, short3 arg1, short3 arg2, short3 arg3,
+                          short3 arg4, short3 arg5, short3 arg6, struct_4regs arg7) { }
+
+// CHECK: define void @v2i16_reg_count(<2 x i16> %arg0, <2 x i16> %arg1, <2 x i16> %arg2, <2 x i16> %arg3, <2 x i16> %arg4, <2 x i16> %arg5, <2 x i16> %arg6, <2 x i16> %arg7, <2 x i16> %arg8, <2 x i16> %arg9, <2 x i16> %arg10, <2 x i16> %arg11, i32 %arg13.coerce0, i32 %arg13.coerce1, i32 %arg13.coerce2, i32 %arg13.coerce3)
+void v2i16_reg_count(short2 arg0, short2 arg1, short2 arg2, short2 arg3,
+                     short2 arg4, short2 arg5, short2 arg6, short2 arg7,
+                     short2 arg8, short2 arg9, short2 arg10, short2 arg11,
+                     struct_4regs arg13) { }
+
+// CHECK: define void @v2i16_reg_count_over(<2 x i16> %arg0, <2 x i16> %arg1, <2 x i16> %arg2, <2 x i16> %arg3, <2 x i16> %arg4, <2 x i16> %arg5, <2 x i16> %arg6, <2 x i16> %arg7, <2 x i16> %arg8, <2 x i16> %arg9, <2 x i16> %arg10, <2 x i16> %arg11, <2 x i16> %arg12, %struct.struct_4regs* byval nocapture align 4 %arg13)
+void v2i16_reg_count_over(short2 arg0, short2 arg1, short2 arg2, short2 arg3,
+                          short2 arg4, short2 arg5, short2 arg6, short2 arg7,
+                          short2 arg8, short2 arg9, short2 arg10, short2 arg11,
+                          short2 arg12, struct_4regs arg13) { }
+
+// CHECK: define void @v2i8_reg_count(<2 x i8> %arg0, <2 x i8> %arg1, <2 x i8> %arg2, <2 x i8> %arg3, <2 x i8> %arg4, <2 x i8> %arg5, i32 %arg6.coerce0, i32 %arg6.coerce1, i32 %arg6.coerce2, i32 %arg6.coerce3)
+void v2i8_reg_count(char2 arg0, char2 arg1, char2 arg2, char2 arg3,
+                    char2 arg4, char2 arg5, struct_4regs arg6) { }
+
+// CHECK: define void @v2i8_reg_count_over(<2 x i8> %arg0, <2 x i8> %arg1, <2 x i8> %arg2, <2 x i8> %arg3, <2 x i8> %arg4, <2 x i8> %arg5, i32 %arg6, %struct.struct_4regs* byval nocapture align 4 %arg7)
+void v2i8_reg_count_over(char2 arg0, char2 arg1, char2 arg2, char2 arg3,
+                         char2 arg4, char2 arg5, int arg6, struct_4regs arg7) { }
+
+// CHECK: define void @num_regs_left_64bit_aggregate(<4 x i32> %arg0, <4 x i32> %arg1, <4 x i32> %arg2, <3 x i32> %arg3, [2 x i32] %arg4.coerce, i32 %arg5)
+void num_regs_left_64bit_aggregate(int4 arg0, int4 arg1, int4 arg2, int3 arg3, struct_char_x8 arg4, int arg5) { }
Index: test/CodeGenOpenCL/addr-space-struct-arg.cl
===================================================================
--- test/CodeGenOpenCL/addr-space-struct-arg.cl
+++ test/CodeGenOpenCL/addr-space-struct-arg.cl
@@ -1,5 +1,5 @@
-// RUN: %clang_cc1 %s -emit-llvm -o - -O0 -finclude-default-header -ffake-address-space-map -triple i686-pc-darwin | FileCheck -check-prefixes=COM,X86 %s
-// RUN: %clang_cc1 %s -emit-llvm -o - -O0 -finclude-default-header -triple amdgcn-amdhsa-amd-amdgizcl | FileCheck -check-prefixes=COM,AMD %s
+// RUN: %clang_cc1 %s -emit-llvm -o - -O0 -finclude-default-header -ffake-address-space-map -triple i686-pc-darwin | FileCheck -enable-var-scope -check-prefixes=COM,X86 %s
+// RUN: %clang_cc1 %s -emit-llvm -o - -O0 -finclude-default-header -triple amdgcn-amdhsa-amd-amdgizcl | FileCheck -enable-var-scope -check-prefixes=COM,AMD %s
 
 typedef struct {
   int cells[9];
@@ -9,6 +9,14 @@
   int cells[16];
 } Mat4X4;
 
+typedef struct {
+  int cells[1024];
+} Mat32X32;
+
+typedef struct {
+  int cells[4096];
+} Mat64X64;
+
 struct StructOneMember {
   int2 x;
 };
@@ -18,7 +26,18 @@
   int2 y;
 };
 
-// COM-LABEL: define void @foo
+struct LargeStructOneMember {
+  int2 x[100];
+};
+
+struct LargeStructTwoMember {
+  int2 x[40];
+  int2 y[20];
+};
+
+
+// X86-LABEL: define void @foo(%struct.Mat4X4* noalias sret %agg.result, %struct.Mat3X3* byval align 4 %in)
+// AMD-LABEL: define %struct.Mat4X4 @foo([9 x i32] %in.coerce)
 Mat4X4 __attribute__((noinline)) foo(Mat3X3 in) {
   Mat4X4 out;
   return out;
@@ -29,37 +48,86 @@
 // the return value.
 // X86: call void @llvm.memcpy.p0i8.p1i8.i32(i8*
 // X86: call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)*
-// AMD: call void @llvm.memcpy.p5i8.p1i8.i64(i8 addrspace(5)*
+
+// AMD: load [9 x i32], [9 x i32] addrspace(1)*
+// AMD: call %struct.Mat4X4 @foo([9 x i32]
 // AMD: call void @llvm.memcpy.p1i8.p5i8.i64(i8 addrspace(1)*
 kernel void ker(global Mat3X3 *in, global Mat4X4 *out) {
   out[0] = foo(in[1]);
 }
 
-// AMD-LABEL: define void @FuncOneMember(%struct.StructOneMember addrspace(5)* byval align 8 %u)
+// X86-LABEL: define void @foo_large(%struct.Mat64X64* noalias sret %agg.result, %struct.Mat32X32* byval align 4 %in)
+// AMD-LABEL: define void @foo_large(%struct.Mat64X64 addrspace(5)* noalias sret %agg.result, %struct.Mat32X32 addrspace(5)* byval align 4 %in)
+Mat64X64 __attribute__((noinline)) foo_large(Mat32X32 in) {
+  Mat64X64 out;
+  return out;
+}
+
+// COM-LABEL: define {{.*}} void @ker_large
+// Expect two mem copies: one for the argument "in", and one for
+// the return value.
+// X86: call void @llvm.memcpy.p0i8.p1i8.i32(i8*
+// X86: call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)*
+// AMD: call void @llvm.memcpy.p5i8.p1i8.i64(i8 addrspace(5)*
+// AMD: call void @llvm.memcpy.p1i8.p5i8.i64(i8 addrspace(1)*
+kernel void ker_large(global Mat32X32 *in, global Mat64X64 *out) {
+  out[0] = foo_large(in[1]);
+}
+
+// AMD-LABEL: define void @FuncOneMember(<2 x i32> %u.coerce)
 void FuncOneMember(struct StructOneMember u) {
   u.x = (int2)(0, 0);
 }
 
+// AMD-LABEL: define void @FuncOneLargeMember(%struct.LargeStructOneMember addrspace(5)* byval align 8 %u)
+void FuncOneLargeMember(struct LargeStructOneMember u) {
+  u.x[0] = (int2)(0, 0);
+}
+
 // AMD-LABEL: define amdgpu_kernel void @KernelOneMember
 // AMD-SAME:  (<2 x i32> %[[u_coerce:.*]])
 // AMD:  %[[u:.*]] = alloca %struct.StructOneMember, align 8, addrspace(5)
 // AMD:  %[[coerce_dive:.*]] = getelementptr inbounds %struct.StructOneMember, %struct.StructOneMember addrspace(5)* %[[u]], i32 0, i32 0
 // AMD:  store <2 x i32> %[[u_coerce]], <2 x i32> addrspace(5)* %[[coerce_dive]]
-// AMD:  call void @FuncOneMember(%struct.StructOneMember addrspace(5)* byval align 8 %[[u]])
+// AMD:  call void @FuncOneMember(<2 x i32>
 kernel void KernelOneMember(struct StructOneMember u) {
   FuncOneMember(u);
 }
 
-// AMD-LABEL: define void @FuncTwoMember(%struct.StructTwoMember addrspace(5)* byval align 8 %u)
+// AMD-LABEL: define amdgpu_kernel void @KernelLargeOneMember(
+// AMD:  %[[U:.*]] = alloca %struct.LargeStructOneMember, align 8, addrspace(5)
+// AMD:  store %struct.LargeStructOneMember %u.coerce, %struct.LargeStructOneMember addrspace(5)* %[[U]], align 8
+// AMD:  call void @FuncOneLargeMember(%struct.LargeStructOneMember addrspace(5)* byval align 8 %[[U]])
+kernel void KernelLargeOneMember(struct LargeStructOneMember u) {
+  FuncOneLargeMember(u);
+}
+
+// AMD-LABEL: define void @FuncTwoMember(<2 x i32> %u.coerce0, <2 x i32> %u.coerce1)
 void FuncTwoMember(struct StructTwoMember u) {
-  u.x = (int2)(0, 0);
+  u.y = (int2)(0, 0);
+}
+
+// AMD-LABEL: define void @FuncLargeTwoMember(%struct.LargeStructTwoMember addrspace(5)* byval align 8 %u)
+void FuncLargeTwoMember(struct LargeStructTwoMember u) {
+  u.y[0] = (int2)(0, 0);
 }
 
+
 // AMD-LABEL: define amdgpu_kernel void @KernelTwoMember
 // AMD-SAME:  (%struct.StructTwoMember %[[u_coerce:.*]])
 // AMD:  %[[u:.*]] = alloca %struct.StructTwoMember, align 8, addrspace(5)
-// AMD:  store %struct.StructTwoMember %[[u_coerce]], %struct.StructTwoMember addrspace(5)* %[[u]]
-// AMD:  call void @FuncTwoMember(%struct.StructTwoMember addrspace(5)* byval align 8 %[[u]])
+// AMD: %[[LD0:.*]] = load <2 x i32>, <2 x i32> addrspace(5)*
+// AMD: %[[LD1:.*]] = load <2 x i32>, <2 x i32> addrspace(5)*
+// AMD: call void @FuncTwoMember(<2 x i32> %[[LD0]], <2 x i32> %[[LD1]])
 kernel void KernelTwoMember(struct StructTwoMember u) {
   FuncTwoMember(u);
 }
+
+// AMD-LABEL: define amdgpu_kernel void @KernelLargeTwoMember
+// AMD-SAME:  (%struct.LargeStructTwoMember %[[u_coerce:.*]])
+// AMD:  %[[u:.*]] = alloca %struct.LargeStructTwoMember, align 8, addrspace(5)
+// AMD:  store %struct.LargeStructTwoMember %[[u_coerce]], %struct.LargeStructTwoMember addrspace(5)* %[[u]]
+// AMD:  call void @FuncLargeTwoMember(%struct.LargeStructTwoMember addrspace(5)* byval align 8 %[[u]])
+kernel void KernelLargeTwoMember(struct LargeStructTwoMember u) {
+  FuncLargeTwoMember(u);
+}
Index: lib/CodeGen/TargetInfo.cpp
===================================================================
--- lib/CodeGen/TargetInfo.cpp
+++ lib/CodeGen/TargetInfo.cpp
@@ -7378,45 +7378,220 @@
 namespace {
 
 class AMDGPUABIInfo final : public DefaultABIInfo {
+private:
+  static const unsigned MaxNumRegsForArgsRet = 16;
+
+  static bool isEntryFunctionCC(llvm::CallingConv::ID CC);
+
+  bool shouldReturnTypeInRegister(QualType Ty,
+                                  ASTContext &Context) const;
+  unsigned numRegsForType(QualType Ty) const;
+
+  bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+  bool isHomogeneousAggregateSmallEnough(const Type *Base,
+                                         uint64_t Members) const override;
+
 public:
-  explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+  explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
+    DefaultABIInfo(CGT) {}
 
-private:
-  ABIArgInfo classifyArgumentType(QualType Ty) const;
+  ABIArgInfo classifyReturnType(QualType RetTy) const;
+  ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
+  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
 
   void computeInfo(CGFunctionInfo &FI) const override;
 };
 
+bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+  return true;
+}
+
+bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
+  const Type *Base, uint64_t Members) const {
+  uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
+
+  // Homogeneous Aggregates may occupy at most 16 registers.
+  return Members * NumRegs <= MaxNumRegsForArgsRet;
+}
+
+/// Check whether the type is small enough to consider passing directly in
+/// registers.
+bool AMDGPUABIInfo::shouldReturnTypeInRegister(QualType Ty,
+                                               ASTContext &Ctx) const {
+  return ((Ctx.getTypeSize(Ty) + 31) / 32) <= MaxNumRegsForArgsRet;
+}
+
+/// Estimate number of registers the type will use when passed in registers.
+unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
+  unsigned NumRegs = 0;
+
+  if (const VectorType *VT = Ty->getAs<VectorType>()) {
+    // Compute from the number of elements. The reported size is based on the
+    // in-memory size, which includes the padding 4th element for 3-vectors.
+    QualType EltTy = VT->getElementType();
+    unsigned EltSize = getContext().getTypeSize(EltTy);
+
+    // 16-bit element vectors should be passed as packed.
+    if (EltSize == 16)
+      return (VT->getNumElements() + 1) / 2;
+
+    unsigned EltNumRegs = (EltSize + 31) / 32;
+    return EltNumRegs * VT->getNumElements();
+  }
+
+  if (const RecordType *RT = Ty->getAs<RecordType>()) {
+    const RecordDecl *RD = RT->getDecl();
+    assert(!RD->hasFlexibleArrayMember());
+
+    for (const FieldDecl *Field : RD->fields()) {
+      QualType FieldTy = Field->getType();
+      NumRegs += numRegsForType(FieldTy);
+    }
+
+    return NumRegs;
+  }
+
+  return (getContext().getTypeSize(Ty) + 31) / 32;
+}
+
 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
+  llvm::CallingConv::ID CC = FI.getCallingConvention();
+
   if (!getCXXABI().classifyReturnType(FI))
     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
 
-  unsigned CC = FI.getCallingConvention();
-  for (auto &Arg : FI.arguments())
-    if (CC == llvm::CallingConv::AMDGPU_KERNEL)
-      Arg.info = classifyArgumentType(Arg.type);
-    else
-      Arg.info = DefaultABIInfo::classifyArgumentType(Arg.type);
+  unsigned NumRegsLeft = MaxNumRegsForArgsRet;
+  for (auto &Arg : FI.arguments()) {
+    if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
+      Arg.info = classifyKernelArgumentType(Arg.type);
+    } else {
+      Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
+    }
+  }
 }
 
-/// \brief Classify argument of given type \p Ty.
-ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty) const {
-  llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
-  if (!StrTy) {
-    return DefaultABIInfo::classifyArgumentType(Ty);
+ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
+  if (isAggregateTypeForABI(RetTy)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // returned by value.
+    if (!getRecordArgABI(RetTy, getCXXABI())) {
+      // Ignore empty structs/unions.
+      if (isEmptyRecord(getContext(), RetTy, true))
+        return ABIArgInfo::getIgnore();
+
+      // Lower single-element structs to just return a regular value.
+      if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+        return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+      if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+        const RecordDecl *RD = RT->getDecl();
+        if (RD->hasFlexibleArrayMember())
+          return DefaultABIInfo::classifyReturnType(RetTy);
+      }
+
+      // Pack aggregates <= 4 bytes into single VGPR or pair.
+      uint64_t Size = getContext().getTypeSize(RetTy);
+      if (Size <= 16)
+        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+
+      if (Size <= 32)
+        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+      if (Size <= 64) {
+        llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
+        return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
+      }
+
+      if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
+        return ABIArgInfo::getDirect();
+    }
   }
 
+  // Otherwise just do the default thing.
+  return DefaultABIInfo::classifyReturnType(RetTy);
+}
+
+/// For kernels all parameters are really passed in a special buffer. It doesn't
+/// make sense to pass anything byval, so everything must be direct.
+ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  // TODO: Can we omit empty structs?
+
   // Coerce single element structs to its element.
-  if (StrTy->getNumElements() == 1) {
-    return ABIArgInfo::getDirect();
-  }
+  if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+    return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
 
   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
   // individual elements, which confuses the Clover OpenCL backend; therefore we
   // have to set it to false here. Other args of getDirect() are just defaults.
   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
 }
 
+ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
+                                               unsigned &NumRegsLeft) const {
+  assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
+
+  Ty = useFirstFieldIfTransparentUnion(Ty);
+
+  if (isAggregateTypeForABI(Ty)) {
+    // Records with non-trivial destructors/copy-constructors should not be
+    // passed by value.
+    if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
+      return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+    // Ignore empty structs/unions.
+    if (isEmptyRecord(getContext(), Ty, true))
+      return ABIArgInfo::getIgnore();
+
+    // Lower single-element structs to just pass a regular value. TODO: We
+    // could do reasonable-size multiple-element structs too, using getExpand(),
+    // though watch out for things like bitfields.
+    if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+      return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+    if (const RecordType *RT = Ty->getAs<RecordType>()) {
+      const RecordDecl *RD = RT->getDecl();
+      if (RD->hasFlexibleArrayMember())
+        return DefaultABIInfo::classifyArgumentType(Ty);
+    }
+
+    // Pack aggregates <= 8 bytes into single VGPR or pair.
+    uint64_t Size = getContext().getTypeSize(Ty);
+    if (Size <= 64) {
+      unsigned NumRegs = (Size + 31) / 32;
+      NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
+
+      if (Size <= 16)
+        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+
+      if (Size <= 32)
+        return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+      // XXX: Should this be i64 instead, and should the limit increase?
+      llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
+      return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
+    }
+
+    if (NumRegsLeft > 0) {
+      unsigned NumRegs = numRegsForType(Ty);
+      if (NumRegsLeft >= NumRegs) {
+        NumRegsLeft -= NumRegs;
+        return ABIArgInfo::getDirect();
+      }
+    }
+  }
+
+  // Otherwise just do the default thing.
+  ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
+  if (!ArgInfo.isIndirect()) {
+    unsigned NumRegs = numRegsForType(Ty);
+    NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
+  }
+
+  return ArgInfo;
+}
+
 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
 public:
   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
_______________________________________________
cfe-commits mailing list
cfe-commits@lists.llvm.org
http://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits

Reply via email to