
File and Glob iterator proposal

Tim Zakian and Brad Chamberlain

August 4, 2014

The goal of this proposal is to describe the interface of an iterator that we are
planning to implement as part of Chapel’s standard libraries, and to solicit com-
ments on it. The intention of the iterator is to yield the names of files and/or
directories reachable from a given start directory (defaulting to the current
working directory). This iterator is meant to model (to an extent) the capabili-
ties of things like glob, wordexp, listdir, ls [-R], find, and the like. The main
design questions tend to be a struggle between capability and simplicity.

1 User-facing interface

The proposed user interface for this iterator is as follows:

1 iter glob(pattern : string = "*",

2 startdir : string = "",

3 recursive : bool = false,

4 files : bool = true,

5 dirs : bool = false,

6 dotfiles : bool = false,

7 sorted : bool = false,

8 expand : bool = false

9) : string

where

• pattern is a valid glob or wordexp glob pattern used to filter the file-
names and/or directory names yielded by the iterator. Note that while
the pattern affects what is yielded, we do not expect it to filter which sub-
directories are traversed in a recursive crawl. More information on what
exactly a valid pattern is can be found on the man(3) page for glob and
wordexp.

• startdir is the directory from which to start the search. Filenames and
directory names yielded by the iterator will be relative to this string and
include the string as a prefix. The empty string "" starts from the current
working directory just like "." but has the effect of yielding names without
"./" prefixed to them.

1

• recursive indicates whether the iterator should recursively consider subdi-
rectories or not. There is an open issue about whether the iterator should
take a depth argument in addition to (or in place of) recursive to limit
the recursion at a particular subdirectory depth (see Section 2).

• files says whether the iterator should yield filenames or not.

• dirs says whether the iterator should yield directory names or not.

• dotfiles tells whether the iterator should yield dotfiles or not. It also
indicates whether the iterator should recursively descend into dot direc-
tories.

• sorted tells whether the iterator should yield its output in lexicographi-
cally sorted order.

• expand says whether the iterator should expand environment variables, or
run shell commands in pattern and startdir (a la wordexp). For more
information on this capability, see the man(3) page for wordexp.

Additional flags have been discussed as possibilities. For a discussion of
these, see Section 2.

Note that while this is an argument-rich iterator, we expect that typical
uses will only need to supply a few arguments due to the heavy use of default
argument values and Chapel’s support for keyword-based argument passing.
For example, here are some sample use cases:

• “give me all files in $PWD and its descendents” → glob(recursive=true)

• “give me all files and directories in $PWD” → glob(dirs=true)

• “give me Python glob” → glob(pattern=. . .)

• “give me C glob” → glob(pattern=. . ., sorted=true)

• “give me C wordexp” → glob(pattern=. . ., expand=true)

We anticipate having a parallel version of this iterator that supports invoca-
tion with forall loops. It is currently expected that sorted will not be a valid
option when using the parallel version.

2 Open Issues

The following are open issues that we are wrestling with, and for which we are
seeking opinions (though opinions on anything in this proposal are fair game).

• Is there a better name for this iterator than glob? On one hand, glob is
short, sweet, and unambiguous; on the other hand, this iterator is also a lot
like ls [-R], and is not particularly glob-like if no argument is provided.

2

• Should sorted be true by default? This is arguably a productivity vs.
performance issue (the implementation would have to sort a directory’s
local contents before yielding them or doing any recursion; though these
are arguably going to be small/quick sorts). Ironically, it seems that C
defaults to sorting while Python does not.

• Should we add a depth argument to limit the depth of the recursion?
Or alternatively, replace recursive with a depth argument? The main
downside to the first proposal is that it uses two flags to indicate one logical
thing; the main downside to the second proposal is that it makes the very
common case of unbounded recursion uglier (e.g., requiring max(int) or a
sentinel value like -1 to be passed in rather than simply recursive=true).

• Should we support an argument to control dropping the final slash when
yielding directory names? (i.e., we expect directory names to be yielded
in the form "subdir/" by default).

• Should we add a symlinks argument to say whether or not we should
follow symbolic links? The main problems that we anticipate are (1) it
adds another flag, and (2) without care, the iterator could get into a
possible infinite loop if a symlink points to a directory that contains the
directory we are currently in.

• For recursive mode, should we support an argument indicating a subdi-
rectory name to avoid recursively descending into? The idea behind this
being that if we wanted to avoid certain directory names (e.g. .svn or
.git), we could set this flag to the string (or strings?) we wanted to skip.
Alternatively, we could have a boolean indicating whether or not to skip
over commmon SCM-based directory names. On one hand, this feels like
a reasonably fiddly option to support; on the other hand, Brad is always
happy when tools bother to support it rather than trying to build the
equivalent himself with more general features.

• Should we support an argument for enabling warnings or a verbose mode?
The idea behind this flag would be to warn you about certain underlying
problems. For instance, if we were using glob with expand = true and
pattern = "$CHPL_HOME/*" and we had not set $CHPL_HOME, we would gen-
erate a warning that we were using an undefined environment variable in
expansion rather than just expanding it to the empty string.

• Is it reasonable for the parallel version of the iterator to not support sort-
ing? Implementing it would either require tricky synchronization within
the iterator, or else gathering all the results and then sorting them (which
is expensive and can trivially be expressed outside of the iterator). Note
that, in general, Chapel iterators that generate sorted results in their se-
rial form (like for i in 1..n) are not necessarily sorted in their forall

forms.

3

• Should we support a multi-locale version of the parallel version? If so,
what scheduling policy should be used? Should one be able to select
between single- and multi-locale implementations via an argument? What
should the default be?

• What should the iterator do by default in the event of special files like
block special files, character special files, named pipes, or sockets? Would
we want to support additional arguments (or a bit vector) to control this
behavior?

3 Examples

3.1 Example 1

1 // Print all files in the current directory

2 // think: ls -F | grep -v / (though potentially unsorted)

3 for fl in glob() do

4 writeln(fl);

3.2 Example 2

1 // Print all files in the current directory in sorted order.

2 // think: ls -F | grep -v /

3 for fl in glob(sorted=true) do

4 writeln(fl);

3.3 Example 3

1 // Print all files and directories in the current directory

2 // think: ls

3 for fl in glob(dirs=true) do

4 writeln(fl);

3.4 Example 4

1 // Print all subdirectories of the current directory.

2 // Won’t recurse (so we only get the children of of the current dir)

3 // think: ls -F | grep /

4 for dir in glob(dirs=true, files=false) do

5 writeln(dir);

3.5 Example 5

1 // Print all subdirectories of the current directory, recursively.

2 for dir in glob(dirs=true, files=false, recursive=true) do

3 writeln(dir);

3.6 Example 6

4

1 // Print all .c files in the current directory

2 // think: ls *.c

3 for fl in glob(pattern="*.c") do

4 writeln(fl);

3.7 Example 7

1 // Print all .c files in this directory or any of its subdirectories

2 // think: ls -R *.c

3 for fl in glob(pattern="*.c", recursive=true) do

4 writeln(fl);

3.8 Example 8

1 // Print all [a-p] directories and files from this directory down

2 for fl in glob(pattern="[a-p]", dirs=true, recursive=true) do

3 writeln(fl);

3.9 Example 9

1 // Print all [a-p] directories and files from this directory down.

2 // Print them in sorted order.

3 for fl in glob(pattern="[a-p]", dirs=true, recursive=true, sorted=true) do

4 writeln(fl);

3.10 Example 10

1 // Print all [a-p] directories and files from the $CHPL_HOME directory down.

2 // Print them in sorted order.

3 for fl in glob(pattern="[a-p]", startdir="$CHPL_HOME", dirs=true,

4 recursive=true, sorted=true, expand=true) do

5 writeln(fl);

3.11 Example 11 (uses open issue)

1 // Print all [a-p] directories and files from $CHPL_HOME down.

2 // Ignore all .git directories and files. Print them in sorted order.

3 for fl in glob(pattern="[a-p]", dirs=true, startdir="$CHPL_HOME"

4 recursive=true, sorted=true, expand=true, skipdirs=".git") do

5 writeln(fl);

3.12 Example 12 (uses open issue)

1 // Print all subdirectories of the current directory

2 // In this case we’d get all subdirectories up to depth 10

3 for dir in glob(dirs=true, files=false, depth=10) do

4 writeln(dir);

5

