ls,
here the source of Julia in CUDA C, a slightly modified version of the
one from the book "CUDA by Example", by Sanders and Kandrot. See for
the source 
http://developer.nvidia.com/cuda-example-introduction-general-purpose-gpu-programming
(chapter 4).
The key idea sugested by R.E. Boss in function juliaB (see programming
forum) is the ommision of the conditional expression, which can be
harmful for the speedup.
A first naive transcription into CUDA C gives some errors. As soon as
I have something working I will inform this forum.
Jan.

/*
 * Copyright 1993-2010 NVIDIA Corporation.  All rights reserved.
 *
 * NVIDIA Corporation and its licensors retain all intellectual property and
 * proprietary rights in and to this software and related documentation.
 * Any use, reproduction, disclosure, or distribution of this software
 * and related documentation without an express license agreement from
 * NVIDIA Corporation is strictly prohibited.
 *
 * Please refer to the applicable NVIDIA end user license agreement (EULA)
 * associated with this source code for terms and conditions that govern
 * your use of this NVIDIA software.
 *
 */


#include "../common/book.h"
#include "../common/cpu_bitmap.h"
#include <math.h>


#define DIM 1000

struct cuComplex {
    float   r;
    float   i;
    __device__ cuComplex( float a, float b ) : r(a), i(b)  {}
    __device__ float magnitude2( void ) {
        return r * r + i * i;
    }
    __device__ cuComplex operator*(const cuComplex& a) {
        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
    }
    __device__ cuComplex operator+(const cuComplex& a) {
        return cuComplex(r+a.r, i+a.i);
    }
};

__device__ int julia( int x, int y ) {
    const float scale = 1.5;
    float jx = scale * (float)(DIM/2 - x)/(DIM/2);
    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);
    cuComplex a(jx, jy);

    int i = 0;
    for (i=0; i<200; i++) {
        a = a * a + c;
        if (a.magnitude2() > 1000)
            return i;
    }

    return 255;
}

// declare device arrays
__device__ unsigned char dev_r[256];
__device__ unsigned char dev_g[256];
__device__ unsigned char dev_b[256];

__global__ void kernel( unsigned char *ptr ) {
    // map from blockIdx to pixel position
    int x = blockIdx.x;
    int y = blockIdx.y;
    int offset = x + y * gridDim.x;

    // now calculate the value at that position
    int juliaValue = julia( x, y );

    ptr[offset*4 + 0] = (juliaValue>>4)+(juliaValue%16<<4);
    ptr[offset*4 + 1] = (juliaValue>>3)+(juliaValue%8<<5);
    ptr[offset*4 + 2] = (juliaValue>>5)+(juliaValue%32<<3);
    ptr[offset*4 + 3] = 255;

}

// globals needed by the update routine
struct DataBlock {
    unsigned char   *dev_bitmap;
};

int main( void ) {
    DataBlock   data;
    CPUBitmap bitmap( DIM, DIM, &data );
    unsigned char    *dev_bitmap;


    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, bitmap.image_size() ) );
    data.dev_bitmap = dev_bitmap;

    dim3    grid(DIM,DIM);
    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,
                              bitmap.image_size(),
                              cudaMemcpyDeviceToHost ) );

    HANDLE_ERROR( cudaFree( dev_bitmap ) );

    bitmap.display_and_exit();
}



-- 
Jan Jacobs
Esdoornstraat 33
5995AN Kessel
W: www.sommaps.com
T: +31 77 462 1887
M: +31 6 23 82 55 21
E: [email protected]
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to