Script 'mail_helper' called by obssrc
Hello community,

here is the log from the commit of package python-numexpr for openSUSE:Factory 
checked in at 2021-03-15 10:54:27
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Comparing /work/SRC/openSUSE:Factory/python-numexpr (Old)
 and      /work/SRC/openSUSE:Factory/.python-numexpr.new.2401 (New)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Package is "python-numexpr"

Mon Mar 15 10:54:27 2021 rev:14 rq:878626 version:2.7.3

Changes:
--------
--- /work/SRC/openSUSE:Factory/python-numexpr/python-numexpr.changes    
2021-01-11 17:15:59.788585604 +0100
+++ /work/SRC/openSUSE:Factory/.python-numexpr.new.2401/python-numexpr.changes  
2021-03-15 10:54:27.457176992 +0100
@@ -1,0 +2,15 @@
+Fri Mar 12 20:28:19 UTC 2021 - Dirk M??ller <[email protected]>
+
+- skip python3.6 build (no numpy) 
+
+-------------------------------------------------------------------
+Wed Mar  3 19:08:44 UTC 2021 - Arun Persaud <[email protected]>
+
+- update to version 2.7.3:
+  * Pinned Numpy versions to minimum supported version in an effort to
+    alleviate issues seen in Windows machines not having the same MSVC
+    runtime installed as was used to build the wheels.
+  * ARMv8 wheels are now available, thanks to odidev for the pull
+    request.
+
+-------------------------------------------------------------------

Old:
----
  numexpr-2.7.2.tar.gz

New:
----
  numexpr-2.7.3.tar.gz

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Other differences:
------------------
++++++ python-numexpr.spec ++++++
--- /var/tmp/diff_new_pack.P3aVvF/_old  2021-03-15 10:54:27.921177705 +0100
+++ /var/tmp/diff_new_pack.P3aVvF/_new  2021-03-15 10:54:27.925177711 +0100
@@ -17,8 +17,9 @@
 
 
 %{?!python_module:%define python_module() python-%{**} python3-%{**}}
+%global skip_python36 1
 Name:           python-numexpr
-Version:        2.7.2
+Version:        2.7.3
 Release:        0
 Summary:        Numerical expression evaluator for NumPy
 License:        MIT

++++++ numexpr-2.7.2.tar.gz -> numexpr-2.7.3.tar.gz ++++++
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/ANNOUNCE.rst 
new/numexpr-2.7.3/ANNOUNCE.rst
--- old/numexpr-2.7.2/ANNOUNCE.rst      2020-12-29 06:49:46.000000000 +0100
+++ new/numexpr-2.7.3/ANNOUNCE.rst      2021-03-01 05:41:15.000000000 +0100
@@ -1,41 +1,25 @@
 ========================
-Announcing NumExpr 2.7.2
+Announcing NumExpr 2.7.3
 ========================
 
 Hi everyone, 
 
-It's been awhile since the last update to NumExpr, mostly as the existing 
scientific 
-Python tool chain for building wheels on PyPi became defunct and we have had 
to 
-redevelop a new one based on `cibuildwheel` and GitHub Actions. This release 
also
-brings us support (and wheels for) Python 3.9.
-
-There have been a number of changes to enhance how NumExpr works when NumPy 
-uses MKL as a backend.
+This is a maintenance release to make use of the oldest supported NumPy 
version 
+when building wheels, in an effort to alleviate issues seen on Windows 
machines 
+that do not have the latest Windows MSVC runtime installed. It also adds
+wheels built via GitHub Actions for ARMv8 platforms.
 
 Project documentation is available at:
 
 http://numexpr.readthedocs.io/
 
-Changes from 2.7.1 to 2.7.2
+Changes from 2.7.2 to 2.7.3
 ---------------------------
 
-- Support for Python 2.7 and 3.5 is deprecated and will be discontinued when 
-  `cibuildwheels` and/or GitHub Actions no longer support these versions.
-- Wheels are now provided for Python 3.7, 3.5, 3.6, 3.7, 3.8, and 3.9 via 
-  GitHub Actions.
-- The block size is now exported into the namespace as 
`numexpr.__BLOCK_SIZE1__`
-  as a read-only value.
-- If using MKL, the number of threads for VML is no longer forced to 1 on 
loading 
-  the module. Testing has shown that VML never runs in multi-threaded mode for 
-  the default BLOCKSIZE1 of 1024 elements, and forcing to 1 can have 
deleterious 
-  effects on NumPy functions when built with MKL. See issue #355 for details.
-- Use of `ndarray.tostring()` in tests has been switch to `ndarray.tobytes()` 
-  for future-proofing deprecation of `.tostring()`, if the version of NumPy is 
-  greater than 1.9.
-- Added a utility method `get_num_threads` that returns the (maximum) number 
of 
-  threads currently in use by the virtual machine. The functionality of 
-  `set_num_threads` whereby it returns the previous value has been deprecated 
-  and will be removed in 2.8.X.
+- Pinned Numpy versions to minimum supported version in an effort to alleviate 
+  issues seen in Windows machines not having the same Windows SDK installed as 
+  was used to build the wheels.
+- ARMv8 wheels are now available, thanks to `odidev` for the pull request.
 
 What's Numexpr?
 ---------------
@@ -77,7 +61,6 @@
 Let us know of any bugs, suggestions, gripes, kudos, etc. you may
 have.
 
-
 Enjoy data!
 
 
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/AUTHORS.txt 
new/numexpr-2.7.3/AUTHORS.txt
--- old/numexpr-2.7.2/AUTHORS.txt       2018-07-12 19:33:23.000000000 +0200
+++ new/numexpr-2.7.3/AUTHORS.txt       2021-03-01 05:15:44.000000000 +0100
@@ -24,4 +24,4 @@
 David Cox improved readability of the Readme.
 
 Robert A. McLeod contributed bug fixes and ported the documentation to 
-numexpr.readthedocs.io.
\ No newline at end of file
+numexpr.readthedocs.io. He is the maintainer of the package since 2016.
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/CMakeLists.txt 
new/numexpr-2.7.3/CMakeLists.txt
--- old/numexpr-2.7.2/CMakeLists.txt    2018-07-12 19:33:23.000000000 +0200
+++ new/numexpr-2.7.3/CMakeLists.txt    1970-01-01 01:00:00.000000000 +0100
@@ -1,104 +0,0 @@
-# WARNING! EXPERIMENTAL! Use setup.py if you're not familiar with cmake.
-#
-# We recommend that you create a separate directory for the build,
-# so that the build files aren't mixed in with the source files.
-# e.g.
-#  $ mkdir build-cmake
-#  $ cd build-cmake
-#  $ cmake ..
-#  $ make
-#
-# MacOSX Notes:
-#   On MacOSX, it may default to 64-bit, even if your Python is 32-bit.
-#   The linker will give NO WARNING, and the resulting .so file will
-#   fail to load in Python. To fix this, run cmake as follows,
-#   assuming you're in <source dir>/build-cmake/:
-#     cmake -DCMAKE_OSX_ARCHITECTURES=i386 ..
-#   To debug this issue, you can compare "lipo -info `which python`"
-#   with "lipo -info numexpr.so". They should have the same platform info.
-#
-#   Further problems on OS X appear to be related to EPD Python. CMake's
-#   default detection may be detecting the wrong python to link against.
-#
-# Windows Notes:
-#   Python 2.7 is built with Visual C++ 9 (aka 2008). This is the one
-#   you should pick when running cmake-gui. Be sure to switch the build
-#   configuration from Debug to Release (or RelWithDebInfo) in Visual Studio.
-
-project(numexpr)
-
-cmake_minimum_required(VERSION 2.8)
-
-# Force the default build type to be Release, because a Debug
-# build doesn't work properly with the default Python build
-if(NOT CMAKE_BUILD_TYPE)
-  set(CMAKE_BUILD_TYPE "Release" CACHE STRING
-      "Choose the type of build, options are: Debug Release
-RelWithDebInfo MinSizeRel."
-      FORCE)
-endif()
-
-set(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR})
-
-find_package(PythonInterp REQUIRED)
-find_package(PythonLibsNew REQUIRED)
-find_package(NumPy REQUIRED)
-
-# Default install location for Python packages
-if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
-    set(CMAKE_INSTALL_PREFIX "${PYTHON_SITE_PACKAGES}" CACHE STRING
-      "Choose the Python module directory (default site-packages)" FORCE)
-endif()
-
-# Require version >= 1.6
-if(NUMPY_VERSION_DECIMAL LESS 10600)
-    message(FATAL_ERROR,
-        "NumExpr requires NumPy >= 1.6")
-endif()
-
-include_directories(
-    ${PYTHON_INCLUDE_DIRS}
-    ${NUMPY_INCLUDE_DIRS}
-    )
-
-set(numexpr_SRC
-    numexpr/interpreter.cpp
-    numexpr/module.cpp
-    numexpr/numexpr_object.cpp
-    numexpr/complex_functions.hpp
-    numexpr/functions.hpp
-    numexpr/interpreter.hpp
-    numexpr/module.hpp
-    numexpr/missing_posix_functions.hpp
-    numexpr/msvc_function_stubs.hpp
-    numexpr/numexpr_config.hpp
-    numexpr/numexpr_object.hpp
-    numexpr/opcodes.hpp
-    )
-if(CMAKE_HOST_WIN32)
-    set(numexpr_SRC
-        ${numexpr_SRC}
-        numexpr/win32/pthread.c
-        )
-endif()
-
-python_add_module(interpreter ${numexpr_SRC})
-
-# Generate __config__.py. This is a dummy placeholder, as I
-# don't know why it's here.
-file(WRITE "${PROJECT_BINARY_DIR}/__config__.py"
-    "# This file is generated by a CMakeFiles.txt configuration\n"
-    "__all__ = ['get_info','show']\n"
-    "def get_info(name):\n"
-    "   return None\n"
-    "def show():\n"
-    "   print('someone called show()')\n")
-
-# Install all the Python scripts
-install(DIRECTORY numexpr DESTINATION "${CMAKE_INSTALL_PREFIX}"
-    FILES_MATCHING PATTERN "*.py")
-# Install __config__.py
-install(FILES "${PROJECT_BINARY_DIR}/__config__.py"
-    DESTINATION "${CMAKE_INSTALL_PREFIX}/numexpr")
-# Install the module
-install(TARGETS interpreter DESTINATION "${CMAKE_INSTALL_PREFIX}/numexpr")
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/INSTALL.rst 
new/numexpr-2.7.3/INSTALL.rst
--- old/numexpr-2.7.2/INSTALL.rst       2018-07-12 19:33:23.000000000 +0200
+++ new/numexpr-2.7.3/INSTALL.rst       1970-01-01 01:00:00.000000000 +0100
@@ -1,54 +0,0 @@
-==================
-Installing Numexpr
-==================
-
-These are instructions for installing Numexpr on Unix systems.  For
-Windows, it is best to install it from binaries.  However, you should
-note that, for the time being, we cannot provide Windows binaries with
-MKL support.
-
-
-Building
-========
-
-This version of `Numexpr` requires Python 2.6 or greater,
-and NumPy 1.6 or greater.
-
-It's built in the standard Python way::
-
-  $ python setup.py build
-  $ python setup.py install
-
-You can test `numexpr` with:
-
-  $ python -c "import numexpr; numexpr.test()"
-
-
-Enabling Intel's MKL support
-============================
-
-numexpr includes support for Intel's MKL library.  This allows for
-better performance on Intel architectures, mainly when evaluating
-transcendental functions (trigonometrical, exponential...).  It also
-enables numexpr using several CPU cores.
-
-If you have Intel's MKL, just copy the `site.cfg.example` that comes
-in the distribution to `site.cfg` and edit the latter giving proper
-directions on how to find your MKL libraries in your system.  After
-doing this, you can proceed with the usual building instructions
-listed above.
-
-Pay attention to the messages during the building process in order to
-know whether MKL has been detected or not.  Finally, you can check the
-speed-ups on your machine by running the `bench/vml_timing.py` script
-(you can play with different parameters to the
-`set_vml_accuracy_mode()` and `set_vml_num_threads()` functions in the
-script so as to see how it would affect performance).
-
-
-
-.. Local Variables:
-.. mode: text
-.. coding: utf-8
-.. fill-column: 70
-.. End:
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/PKG-INFO new/numexpr-2.7.3/PKG-INFO
--- old/numexpr-2.7.2/PKG-INFO  2020-12-29 07:34:37.000000000 +0100
+++ new/numexpr-2.7.3/PKG-INFO  2021-03-03 19:11:42.000000000 +0100
@@ -1,6 +1,6 @@
 Metadata-Version: 1.0
 Name: numexpr
-Version: 2.7.2
+Version: 2.7.3
 Summary: Fast numerical expression evaluator for NumPy
 Home-page: https://github.com/pydata/numexpr
 Author: David M. Cooke, Francesc Alted and others
@@ -76,6 +76,69 @@
         In order to get a better idea on the different speed-ups that can be 
achieved 
         on your platform, run the provided benchmarks.
         
+        Installation
+        ------------
+        
+        From wheels
+        ^^^^^^^^^^^
+        
+        NumExpr is available for install via `pip` for a wide range of 
platforms and 
+        Python versions (which may be browsed at: 
https://pypi.org/project/numexpr/#files). 
+        Installation can be performed as::
+        
+            pip install numexpr
+        
+        If you are using the Anaconda or Miniconda distribution of Python you 
may prefer 
+        to use the `conda` package manager in this case::
+        
+            conda install numexpr
+        
+        From Source
+        ^^^^^^^^^^^
+        
+        On most `Nix systems your compilers will already be present. However 
if you 
+        are using a virtual environment with a substantially newer version of 
Python than
+        your system Python you may be prompted to install a new version of 
`gcc` or `clang`.
+        
+        For Windows, you will need to install the Microsoft Visual C++ Build 
Tools 
+        (which are free) first.The version depends on which version of Python 
you have 
+        installed:
+        
+        https://wiki.python.org/moin/WindowsCompilers
+        
+        For Python 3.6+ simply installating the latest version of MSVC build 
tools should 
+        be sufficient. Note that wheels found via pip do not include MKL 
support. Wheels 
+        available via `conda` will have MKL, if the MKL backend is used for 
NumPy.
+        
+        See `requirements.txt` for the required version of NumPy.
+        
+        NumExpr is built in the standard Python way::
+        
+          python setup.py build install
+        
+        You can test `numexpr` with::
+        
+          python -c "import numexpr; numexpr.test()"
+        
+        Do not test NumExpr in the source directory or you will generate 
import errors.
+        
+        Enable Intel?? MKL support
+        ^^^^^^^^^^^^^^^^^^^^^^^^^
+        
+        NumExpr includes support for Intel's MKL library. This may provide 
better 
+        performance on Intel architectures, mainly when evaluating 
transcendental 
+        functions (trigonometrical, exponential...). 
+        
+        If you have Intel's MKL, copy the `site.cfg.example` that comes with 
the 
+        distribution to `site.cfg` and edit the latter file to provide correct 
paths to 
+        the MKL libraries in your system.  After doing this, you can proceed 
with the 
+        usual building instructions listed above.
+        
+        Pay attention to the messages during the building process in order to 
know 
+        whether MKL has been detected or not.  Finally, you can check the 
speed-ups on 
+        your machine by running the `bench/vml_timing.py` script (you can play 
with 
+        different parameters to the `set_vml_accuracy_mode()` and 
`set_vml_num_threads()` 
+        functions in the script so as to see how it would affect performance).
         
         Usage
         -----
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/README.rst new/numexpr-2.7.3/README.rst
--- old/numexpr-2.7.2/README.rst        2020-12-29 06:50:30.000000000 +0100
+++ new/numexpr-2.7.3/README.rst        2021-03-01 05:15:44.000000000 +0100
@@ -68,6 +68,69 @@
 In order to get a better idea on the different speed-ups that can be achieved 
 on your platform, run the provided benchmarks.
 
+Installation
+------------
+
+From wheels
+^^^^^^^^^^^
+
+NumExpr is available for install via `pip` for a wide range of platforms and 
+Python versions (which may be browsed at: 
https://pypi.org/project/numexpr/#files). 
+Installation can be performed as::
+
+    pip install numexpr
+
+If you are using the Anaconda or Miniconda distribution of Python you may 
prefer 
+to use the `conda` package manager in this case::
+
+    conda install numexpr
+
+From Source
+^^^^^^^^^^^
+
+On most `Nix systems your compilers will already be present. However if you 
+are using a virtual environment with a substantially newer version of Python 
than
+your system Python you may be prompted to install a new version of `gcc` or 
`clang`.
+
+For Windows, you will need to install the Microsoft Visual C++ Build Tools 
+(which are free) first.The version depends on which version of Python you have 
+installed:
+
+https://wiki.python.org/moin/WindowsCompilers
+
+For Python 3.6+ simply installating the latest version of MSVC build tools 
should 
+be sufficient. Note that wheels found via pip do not include MKL support. 
Wheels 
+available via `conda` will have MKL, if the MKL backend is used for NumPy.
+
+See `requirements.txt` for the required version of NumPy.
+
+NumExpr is built in the standard Python way::
+
+  python setup.py build install
+
+You can test `numexpr` with::
+
+  python -c "import numexpr; numexpr.test()"
+
+Do not test NumExpr in the source directory or you will generate import errors.
+
+Enable Intel?? MKL support
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+NumExpr includes support for Intel's MKL library. This may provide better 
+performance on Intel architectures, mainly when evaluating transcendental 
+functions (trigonometrical, exponential...). 
+
+If you have Intel's MKL, copy the `site.cfg.example` that comes with the 
+distribution to `site.cfg` and edit the latter file to provide correct paths 
to 
+the MKL libraries in your system.  After doing this, you can proceed with the 
+usual building instructions listed above.
+
+Pay attention to the messages during the building process in order to know 
+whether MKL has been detected or not.  Finally, you can check the speed-ups on 
+your machine by running the `bench/vml_timing.py` script (you can play with 
+different parameters to the `set_vml_accuracy_mode()` and 
`set_vml_num_threads()` 
+functions in the script so as to see how it would affect performance).
 
 Usage
 -----
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/RELEASE_NOTES.rst 
new/numexpr-2.7.3/RELEASE_NOTES.rst
--- old/numexpr-2.7.2/RELEASE_NOTES.rst 2020-12-29 02:27:40.000000000 +0100
+++ new/numexpr-2.7.3/RELEASE_NOTES.rst 2021-03-01 05:40:50.000000000 +0100
@@ -2,6 +2,15 @@
 Release notes for Numexpr 2.7 series
 ====================================
 
+Changes from 2.7.2 to 2.7.3
+---------------------------
+
+- Pinned Numpy versions to minimum supported version in an effort to alleviate 
+  issues seen in Windows machines not having the same MSVC runtime installed 
as 
+  was used to build the wheels.
+- ARMv8 wheels are now available, thanks to `odidev` for the pull request.
+
+
 Changes from 2.7.1 to 2.7.2
 ---------------------------
 
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/numexpr/tests/test_numexpr.py 
new/numexpr-2.7.3/numexpr/tests/test_numexpr.py
--- old/numexpr-2.7.2/numexpr/tests/test_numexpr.py     2020-08-26 
01:26:50.000000000 +0200
+++ new/numexpr-2.7.3/numexpr/tests/test_numexpr.py     2021-03-01 
05:15:44.000000000 +0100
@@ -1,3 +1,4 @@
+
 ###################################################################
 #  Numexpr - Fast numerical array expression evaluator for NumPy.
 #
@@ -991,11 +992,17 @@
         with _environment('OMP_NUM_THREADS', '5'):
             # NUMEXPR_NUM_THREADS has priority
             with _environment('NUMEXPR_NUM_THREADS', '3'):
-                self.assertEquals(3, numexpr._init_num_threads())
+                 if 'sparc' in platform.machine():
+                     self.assertEqual(1, numexpr._init_num_threads())
+                 else:
+                     self.assertEqual(3, numexpr._init_num_threads())
 
     def test_omp_num_threads(self):
         with _environment('OMP_NUM_THREADS', '5'):
-            self.assertEquals(5, numexpr._init_num_threads())
+            if 'sparc' in platform.machine():
+                self.assertEqual(1, numexpr._init_num_threads())
+            else:
+                self.assertEqual(5, numexpr._init_num_threads())
 
     def test_vml_threads_round_trip(self):
         n_threads = 3
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/numexpr/version.py 
new/numexpr-2.7.3/numexpr/version.py
--- old/numexpr-2.7.2/numexpr/version.py        2020-08-26 01:03:08.000000000 
+0200
+++ new/numexpr-2.7.3/numexpr/version.py        2021-03-03 19:11:41.000000000 
+0100
@@ -1,11 +1,3 @@
-###################################################################
-#  Numexpr - Fast numerical array expression evaluator for NumPy.
-#
-#      License: MIT
-#      Author:  See AUTHORS.txt
-#
-#  See LICENSE.txt and LICENSES/*.txt for details about copyright and
-#  rights to use.
-####################################################################
-
-version = '2.7.2'
+# THIS FILE IS GENERATED BY `SETUP.PY`
+version = '2.7.3'
+numpy_build_version = '1.19.2'
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/numexpr.egg-info/PKG-INFO 
new/numexpr-2.7.3/numexpr.egg-info/PKG-INFO
--- old/numexpr-2.7.2/numexpr.egg-info/PKG-INFO 2020-12-29 07:34:37.000000000 
+0100
+++ new/numexpr-2.7.3/numexpr.egg-info/PKG-INFO 2021-03-03 19:11:42.000000000 
+0100
@@ -1,6 +1,6 @@
 Metadata-Version: 1.0
 Name: numexpr
-Version: 2.7.2
+Version: 2.7.3
 Summary: Fast numerical expression evaluator for NumPy
 Home-page: https://github.com/pydata/numexpr
 Author: David M. Cooke, Francesc Alted and others
@@ -76,6 +76,69 @@
         In order to get a better idea on the different speed-ups that can be 
achieved 
         on your platform, run the provided benchmarks.
         
+        Installation
+        ------------
+        
+        From wheels
+        ^^^^^^^^^^^
+        
+        NumExpr is available for install via `pip` for a wide range of 
platforms and 
+        Python versions (which may be browsed at: 
https://pypi.org/project/numexpr/#files). 
+        Installation can be performed as::
+        
+            pip install numexpr
+        
+        If you are using the Anaconda or Miniconda distribution of Python you 
may prefer 
+        to use the `conda` package manager in this case::
+        
+            conda install numexpr
+        
+        From Source
+        ^^^^^^^^^^^
+        
+        On most `Nix systems your compilers will already be present. However 
if you 
+        are using a virtual environment with a substantially newer version of 
Python than
+        your system Python you may be prompted to install a new version of 
`gcc` or `clang`.
+        
+        For Windows, you will need to install the Microsoft Visual C++ Build 
Tools 
+        (which are free) first.The version depends on which version of Python 
you have 
+        installed:
+        
+        https://wiki.python.org/moin/WindowsCompilers
+        
+        For Python 3.6+ simply installating the latest version of MSVC build 
tools should 
+        be sufficient. Note that wheels found via pip do not include MKL 
support. Wheels 
+        available via `conda` will have MKL, if the MKL backend is used for 
NumPy.
+        
+        See `requirements.txt` for the required version of NumPy.
+        
+        NumExpr is built in the standard Python way::
+        
+          python setup.py build install
+        
+        You can test `numexpr` with::
+        
+          python -c "import numexpr; numexpr.test()"
+        
+        Do not test NumExpr in the source directory or you will generate 
import errors.
+        
+        Enable Intel?? MKL support
+        ^^^^^^^^^^^^^^^^^^^^^^^^^
+        
+        NumExpr includes support for Intel's MKL library. This may provide 
better 
+        performance on Intel architectures, mainly when evaluating 
transcendental 
+        functions (trigonometrical, exponential...). 
+        
+        If you have Intel's MKL, copy the `site.cfg.example` that comes with 
the 
+        distribution to `site.cfg` and edit the latter file to provide correct 
paths to 
+        the MKL libraries in your system.  After doing this, you can proceed 
with the 
+        usual building instructions listed above.
+        
+        Pay attention to the messages during the building process in order to 
know 
+        whether MKL has been detected or not.  Finally, you can check the 
speed-ups on 
+        your machine by running the `bench/vml_timing.py` script (you can play 
with 
+        different parameters to the `set_vml_accuracy_mode()` and 
`set_vml_num_threads()` 
+        functions in the script so as to see how it would affect performance).
         
         Usage
         -----
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/numexpr.egg-info/SOURCES.txt 
new/numexpr-2.7.3/numexpr.egg-info/SOURCES.txt
--- old/numexpr-2.7.2/numexpr.egg-info/SOURCES.txt      2020-12-29 
07:34:37.000000000 +0100
+++ new/numexpr-2.7.3/numexpr.egg-info/SOURCES.txt      2021-03-03 
19:11:42.000000000 +0100
@@ -1,7 +1,5 @@
 ANNOUNCE.rst
 AUTHORS.txt
-CMakeLists.txt
-INSTALL.rst
 LICENSE.txt
 MANIFEST.in
 README.rst
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/numexpr-2.7.2/setup.py new/numexpr-2.7.3/setup.py
--- old/numexpr-2.7.2/setup.py  2020-01-26 23:53:38.000000000 +0100
+++ new/numexpr-2.7.3/setup.py  2021-03-01 05:41:30.000000000 +0100
@@ -13,8 +13,8 @@
 import sys, os, os.path as op, io
 from distutils.command.clean import clean
 
-if sys.version_info < (2, 6):
-    raise RuntimeError("must use python 2.6 or greater")
+if sys.version_info < (2, 7):
+    raise RuntimeError("must use python 2.7 or greater")
 
 try:
     import setuptools
@@ -27,9 +27,24 @@
 with io.open('README.rst', encoding='utf-8') as f:
     LONG_DESCRIPTION = f.read()
 
-# Fetch the version for numexpr (will be put in variable `version`)
-with open(os.path.join('numexpr', 'version.py')) as f:
-    exec(f.read())
+# # Fetch the version for numexpr (will be put in variable `version`)
+# with open(os.path.join('numexpr', 'version.py')) as f:
+#     exec(f.read())
+major_ver = 2
+minor_ver = 7
+nano_ver = 3
+branch = ''
+
+version = '%d.%d.%d%s' % (major_ver, minor_ver, nano_ver, branch)
+with open('numexpr/version.py', 'w') as fh:
+    fh.write('# THIS FILE IS GENERATED BY `SETUP.PY`\n')
+    fh.write("version = '%s'\n" % version)
+    try:
+        import numpy
+        fh.write("numpy_build_version = '%s'\n" % numpy.__version__)
+    except ImportError:
+        pass
+    
 
 def setup_package():
     metadata = dict(

Reply via email to