Script 'mail_helper' called by obssrc Hello community, here is the log from the commit of package python-dask for openSUSE:Factory checked in at 2021-04-06 17:29:45 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Comparing /work/SRC/openSUSE:Factory/python-dask (Old) and /work/SRC/openSUSE:Factory/.python-dask.new.2401 (New) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Package is "python-dask" Tue Apr 6 17:29:45 2021 rev:43 rq:883195 version:2021.4.0 Changes: -------- --- /work/SRC/openSUSE:Factory/python-dask/python-dask.changes 2021-03-12 13:33:13.694318136 +0100 +++ /work/SRC/openSUSE:Factory/.python-dask.new.2401/python-dask.changes 2021-04-06 17:31:06.419213709 +0200 @@ -1,0 +2,128 @@ +Sun Apr 4 16:38:31 UTC 2021 - Arun Persaud <a...@gmx.de> + +- update to version 2021.4.0: + * Adding support for multidimensional histograms with + dask.array.histogramdd (:pr:`7387`) Doug Davis + * Update docs on number of threads and workers in default + LocalCluster (:pr:`7497`) cameron16 + * Add labels automatically when certain files are touched in a PR + (:pr:`7506`) Julia Signell + * Extract ignore_order from kwargs (:pr:`7500`) GALI PREM SAGAR + * Only provide installation instructions when distributed is missing + (:pr:`7498`) Matthew Rocklin + * Start adding isort (:pr:`7370`) Julia Signell + * Add ignore_order parameter in dd.concat (:pr:`7473`) Daniel + Mesejo-Le??n + * Use powers-of-two when displaying RAM (:pr:`7484`) Guido Imperiale + * Added License Classifier (:pr:`7485`) Tom Augspurger + * Replace conda with mamba (:pr:`7227`) Guido Imperiale + * Fix typo in array docs (:pr:`7478`) James Lamb + * Use concurrent.futures in local scheduler (:pr:`6322`) John A + Kirkham + +------------------------------------------------------------------- +Tue Mar 30 21:47:53 UTC 2021 - Ben Greiner <c...@bnavigator.de> + +- Update to 2021.3.1 + * Add a dispatch for is_categorical_dtype to handle non-pandas + objects (GH#7469) brandon-b-miller + * Use multiprocessing.Pool in test_read_text (GH#7472) John A + Kirkham + * Add missing meta kwarg to gufunc class (GH#7423) Peter Andreas + Entschev + * Example for memory-mapped Dask array (GH#7380) Dieter Weber + * Fix NumPy upstream failures xfail pandas and fastparquet + failures (GH#7441) Julia Signell + * Fix bug in repartition with freq (GH#7357) Ruben van de Geer + * Fix __array_function__ dispatching for tril/triu (GH#7457) + Peter Andreas Entschev + * Use concurrent.futures.Executors in a few tests (GH#7429) John + A Kirkham + * Require NumPy >=1.16 (GH#7383) Guido Imperiale + * Minor sort_values housekeeping (GH#7462) Ryan Williams + * Ensure natural sort order in parquet part paths (GH#7249) Ryan + Williams + * Remove global env mutation upon running test_config.py + (GH#7464) Hristo + * Update NumPy intersphinx URL (GH#7460) Gabe Joseph + * Add rot90 (GH#7440) Trevor Manz + * Update docs for required package for endpoint (GH#7454) Nick + Vazquez + * Master -> main in slice_array docstring (GH#7453) Gabe Joseph + * Expand dask.utils.is_arraylike docstring (GH#7445) Doug Davis + * Simplify BlockwiseIODeps importing (GH#7420) Richard (Rick) + Zamora + * Update layer annotation packing method (GH#7430) James Bourbeau + * Drop duplicate test in test_describe_empty (GH#7431) John A + Kirkham + * Add Series.dot method to dataframe module (GH#7236) Madhu94 + * Added df kurtosis-method and testing (GH#7273) Jan Borchmann + * Avoid quadratic-time performance for HLG culling (GH#7403) + Bruce Merry + * Temporarily skip problematic sparse test (GH#7421) James + Bourbeau + * Update some CI workflow names (GH#7422) James Bourbeau + * Fix HDFS test (GH#7418) Julia Signell + * Make changelog subtitles match the hierarchy (GH#7419) Julia + Signell + * Add support for normalize in value_counts (GH#7342) Julia + Signell + * Avoid unnecessary imports for HLG Layer unpacking and + materialization (GH#7381) Richard (Rick) Zamora + * Bincount fix slicing (GH#7391) Genevieve Buckley + * Add sliding_window_view (GH#7234) Deepak Cherian + * Fix typo in docs/source/develop.rst (GH#7414) Hristo + * Switch documentation builds for PRs to readthedocs (GH#7397) + James Bourbeau + * Adds sort_values to dask.DataFrame (GH#7286) gerrymanoim + * Pin sqlalchemy<1.4.0 in CI (GH#7405) James Bourbeau + * Comment fixes (GH#7215) Ryan Williams + * Dead code removal / fixes (GH#7388) Ryan Williams + * Use single thread for pa.Table.from_pandas calls (GH#7347) + Richard (Rick) Zamora + * Replace 'container' with 'image' (GH#7389) James Lamb + * DOC hyperlink repartition (GH#7394) Ray Bell + * Pass delimiter to fsspec in bag.read_text (GH#7349) Martin + Durant + * Update read_hdf default mode to "r" (GH#7039) rs9w33 + * Embed literals in SubgraphCallable when packing Blockwise + (GH#7353) Mads R. B. Kristensen + * Update test_hdf.py to not reuse file handlers (GH#7044) rs9w33 + * Require additional dependencies: cloudpickle, partd, fsspec, + toolz (GH#7345) Julia Signell + * Prepare Blockwise + IO infrastructure (GH#7281) Richard (Rick) + Zamora + * Remove duplicated imports from test_slicing.py (GH#7365) Hristo + * Add test deps for pip development (GH#7360) Julia Signell + * Support int slicing for non-NumPy arrays (GH#7364) Peter + Andreas Entschev + * Automatically cancel previous CI builds (GH#7348) James + Bourbeau + * dask.array.asarray should handle case where xarray class is in + top-level namespace (GH#7335) Tom White + * HighLevelGraph length without materializing layers (GH#7274) + Gabe Joseph + * Drop support for Python 3.6 (GH#7006) James Bourbeau + * Fix fsspec usage in create_metadata_file (GH#7295) Richard + (Rick) Zamora + * Change default branch from master to main (GH#7198) Julia + Signell + * Add Xarray to CI software environment (GH#7338) James Bourbeau + * Update repartition argument name in error text (GH#7336) Eoin + Shanaghy + * Run upstream tests based on commit message (GH#7329) James + Bourbeau + * Use pytest.register_assert_rewrite on util modules (GH#7278) + Bruce Merry + * Add example on using specific chunk sizes in from_array() + (GH#7330) James Lamb + * Move NumPy skip into test (GH#7247) Julia Signell +- Update package descriptions +- Add dask-delayed and dask-diagnostics packages +- Drop dask-multiprocessing package merged into main +- Skip python36: upstream dropped support for Python < 3.7 +- Drop dask-pr7247-numpyskip.patch merged upstream +- Test more optional requirements for better compatibility + assurance. + +------------------------------------------------------------------- Old: ---- dask-2021.3.0.tar.gz dask-pr7247-numpyskip.patch New: ---- dask-2021.4.0.tar.gz ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Other differences: ------------------ ++++++ python-dask.spec ++++++ --- /var/tmp/diff_new_pack.NFczxB/_old 2021-04-06 17:31:07.211214605 +0200 +++ /var/tmp/diff_new_pack.NFczxB/_new 2021-04-06 17:31:07.215214610 +0200 @@ -1,5 +1,5 @@ # -# spec file for package python-dask +# spec file for package python-dask-test # # Copyright (c) 2021 SUSE LLC # @@ -26,120 +26,133 @@ %bcond_with test %endif %define skip_python2 1 +%define skip_python36 1 Name: python-dask%{psuffix} -Version: 2021.3.0 +Version: 2021.4.0 Release: 0 Summary: Minimal task scheduling abstraction License: BSD-3-Clause URL: https://dask.org Source: https://files.pythonhosted.org/packages/source/d/dask/dask-%{version}.tar.gz -# PATCH-FIX-UPSTREAM dask-pr7247-numpyskip.patch -- gh#dask/dask#7247 -Patch0: dask-pr7247-numpyskip.patch -BuildRequires: %{python_module PyYAML} -BuildRequires: %{python_module base >= 3.6} +BuildRequires: %{python_module base >= 3.7} BuildRequires: %{python_module setuptools} BuildRequires: fdupes BuildRequires: python-rpm-macros Requires: python-PyYAML +Requires: python-cloudpickle >= 1.1.1 +Requires: python-fsspec >= 0.6.0 +Requires: python-partd >= 0.3.10 +Requires: python-toolz >= 0.8.2 Recommends: %{name}-array = %{version} Recommends: %{name}-bag = %{version} Recommends: %{name}-dataframe = %{version} +Recommends: %{name}-delayed = %{version} Recommends: %{name}-distributed = %{version} Recommends: %{name}-dot = %{version} -Recommends: %{name}-multiprocessing = %{version} -Recommends: python-bokeh >= 1.0.0 -Recommends: python-cloudpickle >= 0.2.2 +Recommends: python-SQLAlchemy Recommends: python-cityhash Recommends: python-distributed >= %{version} Recommends: python-fastparquet -Recommends: python-fsspec >= 0.6.0 Recommends: python-gcsfs >= 0.4.0 Recommends: python-murmurhash -Recommends: python-partd >= 0.3.10 Recommends: python-psutil Recommends: python-pyarrow >= 0.14.0 Recommends: python-s3fs >= 0.4.0 -Recommends: python-SQLAlchemy -Recommends: python-toolz >= 0.8.2 Recommends: python-xxhash +Suggests: %{name}-all = %{version} +Suggests: %{name}-diagnostics = %{version} +Provides: %{name}-multiprocessing = %{version}-%{release} +Obsoletes: %{name}-multiprocessing < %{version}-%{release} BuildArch: noarch %if %{with test} +# test that we specified all requirements correctly in the core +# and subpackages by only requiring dask-all and optional extras +BuildRequires: %{python_module dask-all = %{version}} +BuildRequires: %{python_module pytest-rerunfailures} +BuildRequires: %{python_module pytest-xdist} +BuildRequires: %{python_module pytest} +# SECTION additional optionally tested (importorskip) packages +BuildRequires: %{python_module SQLAlchemy} BuildRequires: %{python_module cachey} -BuildRequires: %{python_module cloudpickle >= 0.2.2} -BuildRequires: %{python_module distributed >= %{version}} -# optional zarr needs fsspec >= 0.8.4 if present +BuildRequires: %{python_module fastparquet} +# optional zarr increases fsspec miminum to 0.8.4 if present BuildRequires: %{python_module fsspec >= 0.8.4} -BuildRequires: %{python_module graphviz} +BuildRequires: %{python_module h5py} BuildRequires: %{python_module ipython} BuildRequires: %{python_module jsonschema} +BuildRequires: %{python_module matplotlib} BuildRequires: %{python_module mimesis} BuildRequires: %{python_module multipledispatch} -BuildRequires: %{python_module partd >= 0.3.10} -BuildRequires: %{python_module pytest-rerunfailures} -BuildRequires: %{python_module pytest} -BuildRequires: %{python_module toolz >= 0.8.2} -BuildRequires: graphviz -BuildRequires: graphviz-gd -BuildRequires: graphviz-gnome -BuildRequires: %{python_module numpy >= 1.15.1 if (%python-base without python36-base)} -BuildRequires: %{python_module pandas >= 0.25.0 if (%python-base without python36-base)} -BuildRequires: %{python_module tables if (%python-base without python36-base)} -BuildRequires: %{python_module zarr if (%python-base without python36-base)} -# pytest-xdist is not a hard requirement for testing, but this avoids a hang of -# pytest on i586 after successfully passing the test suite -BuildRequires: %{python_module pytest-xdist} +BuildRequires: %{python_module numba} +# snappy required for using fastparquet +BuildRequires: %{python_module python-snappy} +BuildRequires: %{python_module requests} +BuildRequires: %{python_module scikit-image} +BuildRequires: %{python_module scipy} +BuildRequires: %{python_module sparse} +BuildRequires: %{python_module tables} +BuildRequires: %{python_module xarray} +BuildRequires: %{python_module zarr} +# /SECTION %endif %python_subpackages %description -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. -# This must have a Requires for dask and all the dask subpackages %package all +# This must have a Requires for dask and all the dask subpackages Summary: All dask components Requires: %{name} = %{version} +Requires: %{name}-array = %{version} Requires: %{name}-bag = %{version} +Requires: %{name}-dataframe = %{version} +Requires: %{name}-delayed = %{version} +Requires: %{name}-diagnostics = %{version} Requires: %{name}-distributed = %{version} Requires: %{name}-dot = %{version} -Requires: %{name}-multiprocessing = %{version} -%if "%python_flavor" != "python36" -Requires: %{name}-array = %{version} -Requires: %{name}-dataframe = %{version} -%endif %description all -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. - -%if "%python_flavor" == "python36" -This package pulls in all the optional dask components, except for dataframe -and array, because NumPy does not support Python 3.6 anymore. -%else +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. + This package pulls in all the optional dask components. -%endif %package array Summary: Numpy-like array data structure for dask Requires: %{name} = %{version} -Requires: python-numpy >= 1.15.1 -Requires: python-toolz >= 0.8.2 +Requires: %{name}-delayed = %{version} +Requires: python-numpy >= 1.16 +Recommends: python-scipy %description array -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. This package contains the dask array class. @@ -149,19 +162,18 @@ %package bag Summary: Data structure generic python objects in dask Requires: %{name} = %{version} -Requires: %{name}-multiprocessing = %{version} -Requires: python-cloudpickle >= 0.2.2 -Requires: python-fsspec >= 0.6.0 -Requires: python-partd >= 0.3.10 -Requires: python-toolz >= 0.8.2 %description bag -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. This package contains the dask bag class. @@ -174,21 +186,20 @@ Summary: Pandas-like DataFrame data structure for dask Requires: %{name} = %{version} Requires: %{name}-array = %{version} -Requires: %{name}-multiprocessing = %{version} -Requires: python-fsspec >= 0.6.0 -Requires: python-numpy >= 1.15.1 +Requires: python-numpy >= 1.16 Requires: python-pandas >= 0.25.0 -Requires: python-partd >= 0.3.10 -Requires: python-toolz >= 0.8.2 -Recommends: %{name}-bag = %{version} %description dataframe -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. This package contains the dask DataFrame class. @@ -200,21 +211,58 @@ %package distributed Summary: Interface with the distributed task scheduler in dask Requires: %{name} = %{version} -Requires: python-distributed >= 2.0 +Requires: python-distributed >= %{version} %description distributed -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. - -This package contains the dask distributed interface. - -Dask.distributed is a lightweight library for distributed computing in -Python. It extends both the concurrent.futures and dask APIs to -moderate sized clusters. +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. + +This meta package pulls in the distributed module into the dask namespace. + +%package diagnostics +Summary: Diagnostics for dask +Requires: %{name} = %{version} +Requires: python-bokeh >= 1.0.0 + +%description diagnostics +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. + +This package contains the dask.diagnostics module + +%package delayed +Summary: Delayed module for dask +Requires: %{name} = %{version} + +%description delayed +A flexible library for parallel computing in Python. + +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. + +This package contains the dask.delayed module %package dot Summary: Display dask graphs using graphviz @@ -225,30 +273,18 @@ Requires: python-graphviz %description dot -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. - -This package contains the graphviz dot rendering interface. - -%package multiprocessing -Summary: Display dask graphs using graphviz -Requires: %{name} = %{version} -Requires: python-cloudpickle >= 0.2.2 -Requires: python-partd >= 0.3.10 +A flexible library for parallel computing in Python. -%description multiprocessing -A minimal task scheduling abstraction and parallel arrays. -* dask is a specification to describe task dependency graphs. -* dask.array is a drop-in NumPy replacement (for a subset of NumPy) that - encodes blocked algorithms in dask dependency graphs. -* dask.async is a shared-memory asynchronous scheduler that efficiently - executes dask dependency graphs on multiple cores. +Dask is composed of two parts: +- Dynamic task scheduling optimized for computation. This is similar to + Airflow, Luigi, Celery, or Make, but optimized for interactive + computational workloads. +- ???Big Data??? collections like parallel arrays, dataframes, and lists that + extend common interfaces like NumPy, Pandas, or Python iterators to + larger-than-memory or distributed environments. These parallel collections + run on top of dynamic task schedulers. -This package contains the multiprocessing interface. +This package contains the graphviz dot rendering interface. %prep %autosetup -p1 -n dask-%{version} @@ -259,11 +295,28 @@ %install %if !%{with test} %python_install +%{python_expand # give SUSE specific install instructions +sed -E -i '/Please either conda or pip install/,/python -m pip install/ { + s/either conda or pip//; + /conda install/ d; + s/python -m pip install "dask\[(.*)\]".*pip install/zypper in $python-dask-\1/ + }' \ + %{buildroot}%{$python_sitelib}/dask/distributed.py +sed -E -i '/Please either conda or pip install/,/python -m pip install/ c \ + "Please file a bug report https://bugzilla.opensuse.org and\\n"\ + "report the missing requirements."' \ + %{buildroot}%{$python_sitelib}/dask/array/__init__.py \ + %{buildroot}%{$python_sitelib}/dask/bag/__init__.py \ + %{buildroot}%{$python_sitelib}/dask/dataframe/__init__.py +} +%{python_compileall} %python_expand %fdupes %{buildroot}%{$python_sitelib} %endif %if %{with test} %check +# move away from importpath +mv dask dask.moved # different seed or mimesis version donttest="(test_datasets and test_deterministic)" # distributed/pytest-asyncio cancer is spreading @@ -273,14 +326,14 @@ donttest+="or (test_distributed and test_local_get_with_distributed_active)" donttest+="or (test_distributed and test_serializable_groupby_agg)" donttest+="or (test_distributed and test_await)" -# NEP 29: There is no python36-dask-dataframe or -array because Tumbleweed dropped python36-numpy with 1.20 -python36_ignore="--ignore dask/dataframe --ignore dask/array" if [ $(getconf LONG_BIT) -eq 32 ]; then # Fails to convert datatype in obs constrained memory for 32-bit platforms donttest+="or (test_distributed and test_combo_of_layer_types)" donttest+="or (test_distributed and test_annotation_pack_unpack)" + # https://github.com/dask/dask/issues/7489 + donttest+="or (test_distributed and test_blockwise_numpy_)" fi -%pytest -ra -m "not network" -k "not ($donttest ${$python_donttest})" -n auto ${$python_ignore} +%pytest --pyargs dask -ra -m "not network" -k "not ($donttest)" -n auto %endif %if !%{with test} @@ -288,50 +341,47 @@ %doc README.rst %license LICENSE.txt %{python_sitelib}/dask/ -%{python_sitelib}/dask-%{version}-py*.egg-info +%{python_sitelib}/dask-%{version}*-info %exclude %{python_sitelib}/dask/array/ %exclude %{python_sitelib}/dask/bag/ %exclude %{python_sitelib}/dask/dataframe/ -%exclude %{python_sitelib}/dask/distributed.py* +%exclude %{python_sitelib}/dask/diagnostics +%exclude %{python_sitelib}/dask/delayed.py* %exclude %{python_sitelib}/dask/dot.py* -%exclude %{python_sitelib}/dask/multiprocessing.py* -%pycache_only %exclude %{python_sitelib}/dask/__pycache__/distributed.* +%pycache_only %exclude %{python_sitelib}/dask/__pycache__/delayed*.pyc %pycache_only %exclude %{python_sitelib}/dask/__pycache__/dot.* -%pycache_only %exclude %{python_sitelib}/dask/__pycache__/multiprocessing.* %files %{python_files all} %license LICENSE.txt -%if "%python_flavor" != "python36" %files %{python_files array} %license LICENSE.txt %{python_sitelib}/dask/array/ -%endif %files %{python_files bag} %license LICENSE.txt %{python_sitelib}/dask/bag/ -%if "%python_flavor" != "python36" %files %{python_files dataframe} %license LICENSE.txt %{python_sitelib}/dask/dataframe/ -%endif %files %{python_files distributed} %license LICENSE.txt -%{python_sitelib}/dask/distributed.py* -%pycache_only %{python_sitelib}/dask/__pycache__/distributed.* %files %{python_files dot} %license LICENSE.txt %{python_sitelib}/dask/dot.py* %pycache_only %{python_sitelib}/dask/__pycache__/dot.* -%files %{python_files multiprocessing} +%files %{python_files diagnostics} +%license LICENSE.txt +%{python_sitelib}/dask/diagnostics/ + +%files %{python_files delayed} %license LICENSE.txt -%{python_sitelib}/dask/multiprocessing.py* -%pycache_only %{python_sitelib}/dask/__pycache__/multiprocessing.* +%{python_sitelib}/dask/delayed.py* +%pycache_only %{python_sitelib}/dask/__pycache__/delayed*.pyc %endif %changelog ++++++ dask-2021.3.0.tar.gz -> dask-2021.4.0.tar.gz ++++++ ++++ 15850 lines of diff (skipped)