Script 'mail_helper' called by obssrc
Hello community,

here is the log from the commit of package gap-aclib for openSUSE:Factory 
checked in at 2025-09-08 09:58:32
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Comparing /work/SRC/openSUSE:Factory/gap-aclib (Old)
 and      /work/SRC/openSUSE:Factory/.gap-aclib.new.1977 (New)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Package is "gap-aclib"

Mon Sep  8 09:58:32 2025 rev:2 rq:1303084 version:1.3.3

Changes:
--------
--- /work/SRC/openSUSE:Factory/gap-aclib/gap-aclib.changes      2023-12-28 
22:55:47.918019384 +0100
+++ /work/SRC/openSUSE:Factory/.gap-aclib.new.1977/gap-aclib.changes    
2025-09-08 09:59:07.842399410 +0200
@@ -1,0 +2,6 @@
+Sun Sep  7 15:36:50 UTC 2025 - Jan Engelhardt <[email protected]>
+
+- Update to release 1.3.3
+  * Reset RNG in tests for compatibilty with polycyclic 2.17
+
+-------------------------------------------------------------------

Old:
----
  aclib-1.3.2.tar.gz

New:
----
  _scmsync.obsinfo
  aclib-1.3.3.tar.gz
  build.specials.obscpio

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Other differences:
------------------
++++++ gap-aclib.spec ++++++
--- /var/tmp/diff_new_pack.MbVLAO/_old  2025-09-08 09:59:08.310418862 +0200
+++ /var/tmp/diff_new_pack.MbVLAO/_new  2025-09-08 09:59:08.314419028 +0200
@@ -17,7 +17,7 @@
 
 
 Name:           gap-aclib
-Version:        1.3.2
+Version:        1.3.3
 Release:        0
 Summary:        GAP: Almost Crystallographic Groups
 License:        Artistic-2.0

++++++ _scmsync.obsinfo ++++++
mtime: 1757259617
commit: 93ffd86fe33172fb60db235a8b18bed2cf108e7367cfc19fdb22aaa78ddddc66
url: https://src.opensuse.org/jengelh/gap-aclib
revision: master

++++++ aclib-1.3.2.tar.gz -> aclib-1.3.3.tar.gz ++++++
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/PackageInfo.g 
new/aclib-1.3.3/PackageInfo.g
--- old/aclib-1.3.2/PackageInfo.g       2020-01-28 17:11:50.000000000 +0100
+++ new/aclib-1.3.3/PackageInfo.g       2025-08-28 16:43:19.000000000 +0200
@@ -7,8 +7,8 @@
 
 PackageName := "AClib",
 Subtitle := "Almost Crystallographic Groups - A Library and Algorithms",
-Version := "1.3.2",
-Date := "28/01/2020", # dd/mm/yyyy format
+Version := "1.3.3",
+Date := "28/08/2025", # dd/mm/yyyy format
 License := "Artistic-2.0",
 
 Persons := [
@@ -70,7 +70,7 @@
   PDFFile   := "doc/manual.pdf",
   SixFile   := "doc/manual.six",
   LongTitle := "Almost Crystallographic Groups - A Library and Algorithms",
-  Autoload  := true),
+),
 
 Dependencies := rec(
   GAP := ">=4.7",
Binary files old/aclib-1.3.2/doc/manual.dvi and new/aclib-1.3.3/doc/manual.dvi 
differ
Binary files old/aclib-1.3.2/doc/manual.pdf and new/aclib-1.3.3/doc/manual.pdf 
differ
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/doc/manual.toc 
new/aclib-1.3.3/doc/manual.toc
--- old/aclib-1.3.2/doc/manual.toc      2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/doc/manual.toc      1970-01-01 01:00:00.000000000 +0100
@@ -1,17 +0,0 @@
-\chapcontents {1}{The Almost Crystallographic Groups Package}{3}
-\seccontents {1.1}{More about almost crystallographic groups} {3}
-\chapcontents {2}{Algorithms for almost crystallographic groups}{5}
-\seccontents {2.1}{Properties of almost crystallographic groups} {5}
-\seccontents {2.2}{Betti numbers} {5}
-\seccontents {2.3}{Determination of certain extensions} {6}
-\chapcontents {3}{The catalog of almost crystallographic groups}{7}
-\seccontents {3.1}{Rational matrix groups} {7}
-\seccontents {3.2}{Polycyclically presented groups} {8}
-\seccontents {3.3}{More about the type and the defining parameters} {9}
-\seccontents {3.4}{The electronic versus the printed library} {10}
-\chapcontents {4}{Example computations with almost crystallographic groups}{12}
-\seccontents {4.1}{Example computations I} {12}
-\seccontents {4.2}{Example computations II} {13}
-\seccontents {4.3}{Example computations III} {13}
-\chapcontents {}{Bibliography}{16}
-\chapcontents {}{Index}{17}
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/htm/CHAP001.htm 
new/aclib-1.3.3/htm/CHAP001.htm
--- old/aclib-1.3.2/htm/CHAP001.htm     2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/htm/CHAP001.htm     2025-08-28 16:43:19.000000000 +0200
@@ -13,17 +13,17 @@
 important special case of almost crystallographic groups are the 
<strong>almost 
 Bieberbach groups</strong>: these are almost crystallographic and torsion 
free. 
 <p>
-By its definition, an almost crystallographic group <i>G</i> has a finitely 
-generated nilpotent normal subgroup <i>N</i> of finite index. Clearly, 
<i>N</i> is 
+By its definition, an almost crystallographic group <var>G</var> has a 
finitely 
+generated nilpotent normal subgroup <var>N</var> of finite index. Clearly, 
<var>N</var> is 
 polycyclic and thus has a polycyclic series. The number of infinite cyclic 
-factors in such a series for <i>N</i> is an invariant of <i>G</i>: the 
<strong>Hirsch length</strong> 
-of <i>G</i>. 
+factors in such a series for <var>N</var> is an invariant of <var>G</var>: the 
<strong>Hirsch length</strong> 
+of <var>G</var>. 
 <p>
 For each almost crystallographic group of Hirsch length 3 and 4 there exists 
 a representation as a rational matrix group in dimension 4 or 5, respectively. 
 These representations can be considered as affine representations of dimension
 3 or 4. Via these representations, the almost crystallographic groups act 
-(properly discontinuously) on <b>R</b><sup>3</sup> or <b>R</b><sup>4</sup>. 
That is one reason to define
+(properly discontinuously) on <var><font 
face="helvetica,arial">R</font><sup>3</sup></var> or <var><font 
face="helvetica,arial">R</font><sup>4</sup></var>. That is one reason to define
 the <strong>dimension</strong> of an almost crystallographic group as its 
Hirsch length.
 <p>
 The 3-dimensional and a part of the 4-dimensional almost crystallographic 
@@ -58,48 +58,49 @@
 actions on Lie groups.  We recall the original definition here briefly
 and we refer to <a href="biblio.htm#AUS"><cite>AUS</cite></a>, <a 
href="biblio.htm#KD"><cite>KD</cite></a> and <a 
href="biblio.htm#LEE"><cite>LEE</cite></a> for more details. 
 <p>
-Let <i>L</i> be a connected and simply connected nilpotent Lie group. For 
+Let <var>L</var> be a connected and simply connected nilpotent Lie group. For 
 example, the 3-dimensional Heisenberg group, consisting of all upper 
-unitriangular 3&times;3--matrices with real entries is of this type.
-Then <i>L</i>\rtimes <span class="roman">Aut</span>(<i>L</i>) acts affinely 
(on the left) on <i>L</i> via
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
&#8704;<i>l</i>,<i>l</i>&#8242; &#8712; <i>L</i>,&#8704;&#945; &#8712; <span 
class="roman">Aut</span>(<i>L</i>):&nbsp;&nbsp;<sup>(<i>l</i>,&#945;)</sup><i>l</i>&#8242;=<i>l</i>
 &nbsp;&#945;(<i>l</i>&#8242;)&#183;</td></tr></table></td></tr></table>
-<p>
-Let <i>C</i> be a maximal compact subgroup of <span 
class="roman">Aut</span>(<i>L</i>). Then a subgroup <i>G</i> 
-of <i>L</i> \rtimes <i>C</i> is said to be an almost crystallographic group if 
and only 
-if the action of <i>G</i> on <i>L</i>, induced by the action of 
<i>L</i>\rtimes <span class="roman">Aut</span>(<i>L</i>),
-is properly discontinuous and the quotient space <i>G</i> \<i>L</i> is 
compact. 
+unitriangular <var>3times3</var>--matrices with real entries is of this type.
+Then <var>LrtimesAut(L)</var> acts affinely (on the left) on <var>L</var> via
+<p><var> foralll,l'inL,forallalphainAut(L):; 
+   <sup>(l,alpha)</sup>l'=l , alpha(l').  <p></var>
+<p>
+Let <var>C</var> be a maximal compact subgroup of <var>Aut(L)</var>. Then a 
subgroup <var>G</var> 
+of <var>L rtimesC</var> is said to be an almost crystallographic group if and 
only 
+if the action of <var>G</var> on <var>L</var>, induced by the action of 
<var>LrtimesAut(L)</var>,
+is properly discontinuous and the quotient space <var>G backslashL</var> is 
compact. 
 One recovers the situation of the ordinary crystallographic groups by taking 
-<i>L</i>=\Bbb <i>R</i><sup><i>n</i></sup>, for some <i>n</i>, and 
<i>C</i>=<i>O</i>(<i>n</i>), the orthogonal group.
+<var>L=BbbR<sup>n</sup></var>, for some <var>n</var>, and <var>C=O(n)</var>, 
the orthogonal group.
 <p>
 More generally, we say that an abstract group is an almost crystallographic
 group if it can be realized as a genuine almost crystallographic subgroup 
-of some <i>L</i> \rtimes <i>C</i>. In the following theorem we outline some 
algebraic 
+of some <var>L rtimesC</var>. In the following theorem we outline some 
algebraic 
 characterizations of almost crystallographic groups; see Theorem 3.1.3 of 
-<a href="biblio.htm#KD"><cite>KD</cite></a>. Recall that the <strong>Fitting 
subgroup Fitt(<i>G</i>)</strong> of a 
-polycyclic-by-finite group <i>G</i> is its unique maximal normal nilpotent 
+<a href="biblio.htm#KD"><cite>KD</cite></a>. Recall that the <strong>Fitting 
subgroup Fitt<var>(G)</var></strong> of a 
+polycyclic-by-finite group <var>G</var> is its unique maximal normal nilpotent 
 subgroup.
 <p>
 <strong>Theorem.</strong>
-The following are equivalent for a polycyclic-by-finite group <i>G</i>:
+The following are equivalent for a polycyclic-by-finite group <var>G</var>:
 <dl compact>
-<dt>(1)<dd><i>G</i> is an almost crystallographic group.
-<dt>(2)<dd>Fitt(<i>G</i>) is torsion free and of finite index in <i>G</i>.
-<dt>(3)<dd><i>G</i> contains a torsion free nilpotent normal subgroup <i>N</i>
-of finite index in <i>G</i> with <i>C</i><sub><i>G</i></sub>(<i>N</i>) torsion 
free.
-<dt>(4)<dd><i>G</i> has a nilpotent subgroup of finite index and there
-are no non-trivial finite normal subgroups in <i>G</i>.
+<dt>(1)<dd><var>G</var> is an almost crystallographic group.
+<dt>(2)<dd>Fitt<var>(G)</var> is torsion free and of finite index in 
<var>G</var>.
+<dt>(3)<dd><var>G</var> contains a torsion free nilpotent normal subgroup 
<var>N</var>
+of finite index in <var>G</var> with <var>C<sub>G</sub>(N)</var> torsion free.
+<dt>(4)<dd><var>G</var> has a nilpotent subgroup of finite index and there
+are no non-trivial finite normal subgroups in <var>G</var>.
 </dl>
 <p>
-In particular, if <i>G</i> is almost crystallographic, then <i>G</i> / 
<i>Fitt</i>(<i>G</i>)
-is finite. This factor is called the <strong>holonomy group</strong> of 
<i>G</i>. 
+In particular, if <var>G</var> is almost crystallographic, then <var>G / 
Fitt(G)</var>
+is finite. This factor is called the <strong>holonomy group</strong> of 
<var>G</var>. 
 <p>
 The dimension of an almost crystallographic group equals the dimension
-of the Lie group <i>L</i> above which coincides also with the Hirsch length 
+of the Lie group <var>L</var> above which coincides also with the Hirsch 
length 
 of the polycyclic-by-finite group. This library therefore contains 
 families of virtually nilpotent groups of Hirsch length 3 and 4. 
 <p>
 <p>
 [<a href = "chapters.htm">Up</a>] [<a href ="CHAP002.htm">Next</a>] [<a href = 
"theindex.htm">Index</a>]
 <P>
-<address>aclib manual<br>January 2020
+<address>aclib manual<br>August 2025
 </address></body></html>
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/htm/CHAP002.htm 
new/aclib-1.3.3/htm/CHAP002.htm
--- old/aclib-1.3.2/htm/CHAP002.htm     2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/htm/CHAP002.htm     2025-08-28 16:43:19.000000000 +0200
@@ -40,9 +40,10 @@
 <p>
 <h2><a name="SECT002">2.2 Betti numbers</a></h2>
 <p><p>
-Let <i>G</i> be a polycyclically presented and torsion free group of Hirsch 
-length <i>n</i>. Then we can compute the Betti numbers 
&#946;<sub><i>i</i></sub>(<i>G</i>) for <i>i</i>  &#8712;  {0, 1, 2, 
<i>n</i>&#8722;2, <i>n</i>&#8722;1, <i>n</i>}. If <i>n</i>  &#8804; 6, then we 
can compute all Betti
-numbers &#946;<sub><i>i</i></sub>(<i>G</i>) for 0  &#8804; <i>i</i>  &#8804; 6 
of <i>G</i>. We introduce the following
+Let <var>G</var> be a polycyclically presented and torsion free group of 
Hirsch 
+length <var>n</var>. Then we can compute the Betti numbers 
<var>beta<sub>i</sub>(G)</var> for <var>i in
+{0, 1, 2, n-2, n-1, n}</var>. If <var>n leq6</var>, then we can compute all 
Betti
+numbers <var>beta<sub>i</sub>(G)</var> for <var>0 leqi leq6</var> of 
<var>G</var>. We introduce the following
 functions for this purpose and we refer to <a 
href="biblio.htm#BRO"><cite>BRO</cite></a> for the details on 
 the orientation module and the Betti numbers.
 <p>
@@ -50,14 +51,15 @@
 <li><code>OrientationModule( </code><var>G</var><code> ) F</code>
 <p>
 This function determines the orientation module of the polycyclically
-presented group <var>G</var>; that is, it returns a list of matrices 
<i>m</i><sub>1</sub>, &#8230;, <i>m</i><sub><i>n</i></sub>  &#8804; <i>GL</i>( 
1, <b>Z</b>) which are the images of the 'Igs(G)' in their action
+presented group <var>G</var>; that is, it returns a list of matrices 
<var>m<sub>1</sub>, ...,
+m<sub>n</sub> leqGL( 1, <font face="helvetica,arial">Z</font>)</var> which are 
the images of the 'Igs(G)' in their action
 on the orientation module.  
 <p>
 <a name = "SSEC002.2"></a>
 <li><code>BettiNumber( </code><var>G</var><code>, </code><var>m</var><code> ) 
F</code>
 <p>
 This function returns the <var>m</var>th Betti number of the polycyclically 
presented
-torsion free group <var>G</var> if <i>m</i>  &#8712; {0, 1, 2, 
<i>n</i>&#8722;2, <i>n</i>&#8722;1, <i>n</i>}, where <i>n</i> is the 
+torsion free group <var>G</var> if <var>m in{0, 1, 2, n-2, n-1, n}</var>, 
where <var>n</var> is the 
 Hirsch length of <var>G</var>. 
 <p>
 <a name = "SSEC002.3"></a>
@@ -69,13 +71,13 @@
 <p>
 <h2><a name="SECT003">2.3 Determination of certain extensions</a></h2>
 <p><p>
-Let <i>G</i> be a polycyclically presented almost crystallographic group. We 
want 
-to check the existence of certain extensions of <i>G</i>. 
+Let <var>G</var> be a polycyclically presented almost crystallographic group. 
We want 
+to check the existence of certain extensions of <var>G</var>. 
 <p>
-First, it is well-known that the equivalence classes of extensions of <i>G</i>
-correspond to the second cohomology group of <i>G</i>. This cohomology group 
can
+First, it is well-known that the equivalence classes of extensions of 
<var>G</var>
+correspond to the second cohomology group of <var>G</var>. This cohomology 
group can
 be computed using the methods of the <font face="Gill 
Sans,Helvetica,Arial">Polycyclic</font> package for any 
-explicitly given module of <i>G</i>. Further, we can construct a polycyclic
+explicitly given module of <var>G</var>. Further, we can construct a polycyclic
 presentation for each cocycle of the second cohomology group. We give an 
 example for such a computation below. 
 <p>
@@ -91,10 +93,10 @@
 <li><code>HasExtensionOfType( </code><var>G</var><code>, 
</code><var>torsionfree</var><code>, </code><var>minimalcentre</var><code> ) 
F</code>
 <p>
 Suppose that <var>G</var> is a polycyclically presented almost 
crystallographic group
-with Fitting subgroup <i>N</i>. This function checks if there is a 
<i>G</i>-module 
-<i>M</i>  &#8773; <b>Z</b> which is centralized by <i>N</i> such that there 
exists a torsion
-free extension of <i>M</i> by <var>G</var> (if the flag <var>torsionfree</var> 
is true) or an 
-extension <i>E</i> with <i>Z</i>(<i>Fitt</i>(<i>E</i>)) = <i>M</i> (if the 
flag <var>minimalcentre</var> is true)
+with Fitting subgroup <var>N</var>. This function checks if there is a 
<var>G</var>-module 
+<var>M cong<font face="helvetica,arial">Z</font></var> which is centralized by 
<var>N</var> such that there exists a torsion
+free extension of <var>M</var> by <var>G</var> (if the flag 
<var>torsionfree</var> is true) or an 
+extension <var>E</var> with <var>Z(Fitt(E)) = M</var> (if the flag 
<var>minimalcentre</var> is true)
 or an extension which satisfies both conditions (if both flags are true).
 <p>
 We note that the existence of such extensions is of interest in the 
@@ -105,5 +107,5 @@
 <p>
 [<a href = "chapters.htm">Up</a>] [<a href ="CHAP001.htm">Previous</a>] [<a 
href ="CHAP003.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
 <P>
-<address>aclib manual<br>January 2020
+<address>aclib manual<br>August 2025
 </address></body></html>
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/htm/CHAP003.htm 
new/aclib-1.3.3/htm/CHAP003.htm
--- old/aclib-1.3.2/htm/CHAP003.htm     2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/htm/CHAP003.htm     2025-08-28 16:43:19.000000000 +0200
@@ -40,12 +40,12 @@
 that is, in this case <var>type</var> is a number in [1..17] in dimension 3 or 
a
 number in [1..95] in dimension 4. Alternatively, <var>type</var> can be a 
string
 defining the desired type. In dimension 3 the possible strings are 
-<code>"01"</code>, <code>"02"</code>, &#8230;, <code>"17"</code>. In dimension 
4 the possible strings 
+<code>"01"</code>, <code>"02"</code>, <var>...</var>, <code>"17"</code>. In 
dimension 4 the possible strings 
 are listed in the list <code>ACDim4Types</code> and thus can be accessed from 
<font face="Gill Sans,Helvetica,Arial">GAP</font>.
 <p>
 <var>parameters</var> is a list of integers. Its length depends on the type of 
 the chosen group. The lists <code>ACDim3Param</code> and 
<code>ACDim4Param</code> contain
-at position <i>i</i> the length of the parameter list for the type number 
<i>i</i>.
+at position <var>i</var> the length of the parameter list for the type number 
<var>i</var>.
 Every list of integers of this length is a valid <var>parameter</var> input.
 Alternatively, one can input <code>false</code> instead of a parameter list. 
Then 
 <font face="Gill Sans,Helvetica,Arial">GAP</font> will chose a random 
parameter list of suitable length.
@@ -105,10 +105,10 @@
 We can use the polycyclic presentations of almost crystallographic
 groups to exhibit structure information on these groups. For example,
 we can determine their Fitting subgroup and ask group-theoretic 
-questions about this nilpotent group. The factor <i>G</i> / 
<i>Fit</i>(<i>G</i>) of an
-almost crystallographic group <i>G</i> is called <strong>holonomy 
group</strong>. We 
+questions about this nilpotent group. The factor <var>G / Fit(G)</var> of an
+almost crystallographic group <var>G</var> is called <strong>holonomy 
group</strong>. We 
 provide access to this factor of a pcp group via the following 
-functions. Let <i>G</i> be an almost crystallographic pcp group.
+functions. Let <var>G</var> be an almost crystallographic pcp group.
 <p>
 <a name = "SSEC002.3"></a>
 <li><code>HolonomyGroup( </code><var>G</var><code> )</code>
@@ -193,13 +193,13 @@
 each subfamily is assigned a type; that is, a string which is used to 
 identify the subfamily. As mentioned above, for the 3-dimensional almost 
 crystallographic groups the type is a string representing the numbers from 
-1 to 17, i.e. the available types are <code>"01"</code>, <code>"02"</code>, 
&#8230;, <code>"17"</code>. 
+1 to 17, i.e. the available types are <code>"01"</code>, <code>"02"</code>, 
<var>...</var>, <code>"17"</code>. 
 <p>
 For the 4-dimensional almost crystallographic groups with a Fitting subgroup 
 of class 2 the type is a string of 3 or 4 characters. In general, a string of 
 3 characters representing
 the number of the table entry in <a href="biblio.htm#KD"><cite>KD</cite></a> 
is used. So possible types are 
-<code>"001"</code>, <code>"002"</code>, &#8230;. The reader is warned however 
that not all 
+<code>"001"</code>, <code>"002"</code>, <var>...</var>. The reader is warned 
however that not all 
 possible numbers are used, e.g. there are no groups of type 
<code>"016"</code>. Also, 
 the types do not appear in their natural order in <a 
href="biblio.htm#KD"><cite>KD</cite></a>. Moreover, for 
 certain numbers there is more than one family of groups listed in <a 
href="biblio.htm#KD"><cite>KD</cite></a>. 
@@ -245,25 +245,53 @@
 we find the following groups in the table starting with entry ``13''.
 <p>
 <p>
-13. <i>Q</i>=<i>P</i>2/<i>c</i>
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
</td><td nowrap="nowrap"><table border="0" align="left" cellspacing="0" 
cellpadding="0"><tr><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
<i>E</i>:&nbsp;&nbsp;&#9001;<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>,&#945;,&#946;&nbsp;&nbsp;&#124;&#124;&nbsp;&nbsp;</td></tr></table></td><td
 nowrap="nowrap" align="center"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" 
align="center">&nbsp;[<i>b</i>,<i>a</i>]=1&#183;61<i>cm</i> 
[<i>d</i>,<i>a</i>]=1  </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="left">&#9002;</td></tr></table></td></tr> <tr><td 
nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="no
 wrap" align="center"> </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center"></td><td nowrap="nowrap"><table border="0" 
align="left" cellspacing="0" cellpadding="0"><tr><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center"> [<i>c</i>,<i>a</i>]=<i>d</i><sup>2 
<i>k</i><sub>1</sub></sup> </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="left">[<i>d</i>,<i>b</i>]=1 </td></tr></table></td></tr> 
<tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
[<i>c</i>,<i>b</i>]=1 </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="left">[<i>d</i>,<i>c</i>]=1 </td></tr></table></td>
 </tr> <tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
&#945;<i>a</i>=<i>a</i><sup>&#8722;1</sup>&#945;<i>d</i><sup><i>k</i><sub>2</sub></sup>
 </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" 
align="left">&#945;<sup>2</sup>=<i>d</i><sup><i>k</i><sub>3</sub></sup> 
</td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" 
colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center"> &#945;<i>b</i>=<i>b</i>&#945; 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" 
align="left">&#945;<i>d</i> = <i>d</i> &#945; </td></tr></table></td></tr> 
<tr><td nowrap="nowrap" align="center" colspan="1"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
&#945;<i>c
 </i>=<i>c</i><sup>&#8722;1</sup>&#945;<i>d</i><sup>&#8722;2 
<i>k</i><sub>6</sub></sup> </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="left"></td></tr></table></td></tr> <tr><td 
nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
&#946;<i>a</i>=<i>a</i><sup>&#8722;1</sup>&#946;<i>d</i><sup><i>k</i><sub>1</sub>+<i>k</i><sub>2</sub></sup>
  </td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" 
align="left">&#946;<sup>2</sup>=<i>d</i><sup><i>k</i><sub>5</sub></sup> 
</td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" 
colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center"> 
&#946;<i>b</i>=<i>b</i><sup>&#8722;1</sup>&#946;<i>d</i><sup><i>k</i><sub>4</sub></sup>
 </td></tr></table></td>
 <td nowrap="nowrap" align="center"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="left">&#946;<i>d</i> = <i>d</i> 
&#946; </td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" 
colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center"> 
&#946;<i>c</i>=<i>c</i><sup>&#8722;1</sup>&#946;<i>d</i><sup>&#8722;2 
<i>k</i><sub>6</sub></sup> </td></tr></table></td><td nowrap="nowrap" 
align="center"><table><tr><td nowrap="nowrap" align="center" 
colspan="1">&#945;&#946; = 
<i>c</i>&#946;&#945;<i>d</i><sup><i>k</i><sub>6</sub></sup>  
</td></tr></table></td></tr></table></td><td nowrap="nowrap"> 
</td></tr></table></td><td nowrap="nowrap" align="center"><table><tr><td 
nowrap="nowrap" align="center" 
colspan="1"></td></tr></table></td></tr></table></td><td nowrap="nowrap"> 
</td></tr></table></td></tr></table>
-<p>
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" 
align="center">&#955;(&#945;)=</td><td align="left" class="cl">&#x239B;<br 
/>&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br 
/>&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239D;</td><td 
nowrap="nowrap"><table border="0" align="left" cellspacing="0" 
cellpadding="0"><tr><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
1</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"></td><td 
nowrap="nowrap" align="center"><i>k</i><sub>1</sub><div class="hrcomp"><hr 
noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" 
align="center">+<i>k</i><sub>2</sub> </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpa
 dding="2"><tr><td nowrap="nowrap" align="center">0 </td></tr></table></td><td 
nowrap="nowrap" align="center"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;2 
<i>k</i><sub>6</sub> </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="left"></td><td nowrap="nowrap" 
align="center"><i>k</i><sub>3</sub><div class="hrcomp"><hr noshade="noshade" 
size="1"/></div>2<br /></td><td nowrap="nowrap" align="center">+</td><td 
nowrap="nowrap" align="center"><i>k</i><sub>6</sub><div class="hrcomp"><hr 
noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" 
align="center"></td></tr></table></td></tr> <tr><td nowrap="nowrap" 
align="center" colspan="1"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
0</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap
 ="nowrap" align="center">&#8722;1 </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="left">0 </td></tr></table></td></tr> <tr><td 
nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" 
align="center">0</td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center">1 </td></tr></table></td><td nowrap="nowrap" 
align=
 "center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="left">0 </td></tr></table></td></tr> <tr><td 
nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;1 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="
 nowrap" align="left"></td><td nowrap="nowrap" align="center">1<div 
class="hrcomp"><hr noshade="noshade" size="1"/></div>2<br /></td><td 
nowrap="nowrap" align="center"></td></tr></table></td></tr> <tr><td 
nowrap="nowrap" align="center" colspan="1"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table><tr><td 
nowrap="nowrap" align="center" colspan="1">1 
</td></tr></table></td></tr></table></td><td nowrap="nowrap"></td><td 
align="left" class="cl"
 >&#x239E;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br 
 >/>&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br 
 >/>&#x23A0;</td><td nowrap="nowrap" 
 >align="center">&nbsp;&nbsp;&nbsp;&nbsp;&#955;(&#946;)=</td><td align="left" 
 >class="cl">&#x239B;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br 
 >/>&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239C;<br />&#x239D;</td><td 
 >nowrap="nowrap"><table border="0" align="left" cellspacing="0" 
 >cellpadding="0"><tr><td nowrap="nowrap" align="center"><table border="0" 
 >cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
 >1</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
 >cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" 
 >align="center"><i>k</i><sub>1</sub>+<i>k</i><sub>2</sub> 
 ></td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
 >cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" 
 >align="center"><i>k</i><sub>4</sub> </td></tr></table></td><td nowrap="nowrap
 " align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center">&#8722;2 <i>k</i><sub>6</sub> 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left"></td><td 
nowrap="nowrap" align="center"><i>k</i><sub>5</sub><div class="hrcomp"><hr 
noshade="noshade" size="1"/></div>2<br /></td><td nowrap="nowrap" 
align="center"></td></tr></table></td></tr> <tr><td nowrap="nowrap" 
align="center" colspan="1"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
0</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">&#8722;1 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0"
  cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">0 
</td></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" 
colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center">0</td></tr></table></td><td nowrap="nowrap" 
align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
nowrap="nowrap" align="center">&#8722;1 </td></tr></table></td><td 
nowrap="nowrap" align="center"><table border="0" cellspacing="0" 
cellpadding="2"><tr><td nowrap="nowrap" align="center">0 
</td></tr></table></td><td nowrap="nowrap" align="center"><table border="0" 
cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" align="left">0 </td
 ></tr></table></td></tr> <tr><td nowrap="nowrap" align="center" 
 >colspan="1"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
 >nowrap="nowrap" align="center"> 0 </td></tr></table></td><td nowrap="nowrap" 
 >align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
 >nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" 
 >align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
 >nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" 
 >align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
 >nowrap="nowrap" align="center">&#8722;1 </td></tr></table></td><td 
 >nowrap="nowrap" align="center"><table border="0" cellspacing="0" 
 >cellpadding="2"><tr><td nowrap="nowrap" 
 >align="left">0</td></tr></table></td></tr> <tr><td nowrap="nowrap" 
 >align="center" colspan="1"><table border="0" cellspacing="0" 
 >cellpadding="2"><tr><td nowrap="nowrap" align="center"> 0 
 ></td></tr></table></td><td nowrap="nowrap" align="center"
 ><table border="0" cellspacing="0" cellpadding="2"><tr><td nowrap="nowrap" 
 >align="center">0 </td></tr></table></td><td nowrap="nowrap" 
 >align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
 >nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" 
 >align="center"><table border="0" cellspacing="0" cellpadding="2"><tr><td 
 >nowrap="nowrap" align="center">0 </td></tr></table></td><td nowrap="nowrap" 
 >align="center"><table><tr><td nowrap="nowrap" align="center" colspan="1">1 
 ></td></tr></table></td></tr></table></td><td nowrap="nowrap"></td><td 
 >align="left" class="cl">&#x239E;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br 
 >/>&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x239F;<br />&#x23A0;</td><td 
 >nowrap="nowrap" align="center"></td></tr></table></td></tr></table>
-<p>
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" 
align="center"><i>H</i><sup>2</sup>(<i>Q</i>,<b>Z</b>)=<b>Z</b>&#8853;(<b>Z</b><sub>2</sub>)<sup>4</sup>=<b>Z</b><sup>6</sup>/<i>A</i>,</td></tr></table></td></tr></table>
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" 
align="center"><i>A</i>={(<i>k</i><sub>1</sub>,&#8230;,<i>k</i><sub>6</sub>)&#124;&#124;
 <i>k</i><sub>1</sub>=0,&nbsp;&nbsp;<i>k</i><sub>2</sub>,&#8230;, 
<i>k</i><sub>5</sub> &#8712; 2<b>Z</b>,&nbsp;&nbsp;<i>k</i><sub>6</sub> &#8712; 
<b>Z</b>}</td></tr></table></td></tr></table>
+13. <var>Q=P2/c</var>
+<p><var>
+matrix E:;langlea,b,c,d,alpha,beta;|;   ,[b,a]=1hskip1.61cm 
+       [d,a]=1
+  rangle<br>
+                   matrix [c,a]=d<sup>2 k_1</sup>  [d,b]=1 <br>
+                    [c,b]=1  [d,c]=1 <br>
+alphaa=a<sup>-1</sup>alphad<sup>k_2</sup>  alpha<sup>2</sup>=d<sup>k_3</sup> 
<br>
+alphab=balpha  alphad= d alpha <br>
+alphac=c<sup>-1</sup>alphad<sup>-2 k_6</sup>  <br>
+betaa=a<sup>-1</sup>betad<sup>k_1+k_2</sup>   beta<sup>2</sup>=d<sup>k_5</sup> 
<br>
+betab=b<sup>-1</sup>betad<sup>k_4</sup>  betad= d beta <br>
+betac=c<sup>-1</sup>betad<sup>-2 k_6</sup>  alphabeta=cbetaalphad<sup>k_6</sup>
+    
+<p></var>
+<p>
+<p><var>lambda(alpha)=left(matrix
+1 frack<sub>1</sub>2+k<sub>2</sub>  0  -2 k<sub>6</sub>  
frack<sub>3</sub>2+frack<sub>6</sub>2 <br>
+0 -1  0  0  0 <br>
+0  0 1    0  0 <br>
+0  0  0  -1  frac12<br>
+0  0  0  0  1
+right)
+;;lambda(beta)=left(matrix
+1 k<sub>1</sub>+k<sub>2</sub>  k<sub>4</sub>  -2 k<sub>6</sub>  
frack<sub>5</sub>2 <br>
+0 -1  0  0  0 <br>
+0  0 -1    0  0 <br>
+0  0  0  -1  0<br>
+0  0  0  0  1
+    right)
+<p></var>
+<p>
+<p><var>H<sup>2</sup>(Q,<font face="helvetica,arial">Z</font>)=<font 
face="helvetica,arial">Z</font>oplus(<font 
face="helvetica,arial">Z</font><sub>2</sub>)<sup>4</sup>=<font 
face="helvetica,arial">Z</font><sup>6</sup>/A,<p></var>
+<p><var>A={(k<sub>1</sub>,...,k<sub>6</sub>)|
+k<sub>1</sub>=0,;k<sub>2</sub>,..., k<sub>5</sub>in2<font 
face="helvetica,arial">Z</font>,;k<sub>6</sub>in<font 
face="helvetica,arial">Z</font>}<p></var>
 AB-groups:
 <p>
-&#8704;<i>k</i> &gt; 0,&nbsp;&nbsp;<i>k</i> &#8801; 0 mod 
2,&nbsp;&nbsp;(<i>k</i>,0,1,0,1,0) 
+<var>forallk&gt;0,;kequiv0bmod2,;<var>(k,0,1,0,1,0)</var></var>
 <p>
 <p>
 The number ``13'' at the beginning of this entry is the type of the 
 almost crystallographic group in this library. This family of groups 
-with type 13 depends on 6 parameters <i>k</i><sub>1</sub>, 
<i>k</i><sub>2</sub>, &#8230;, <i>k</i><sub>6</sub> and these 
+with type 13 depends on 6 parameters <var>k<sub>1</sub>, k<sub>2</sub>, ..., 
k<sub>6</sub></var> and these 
 are the <var>parameters</var> list in this library. The rational matrix 
 representation in <font face="Gill Sans,Helvetica,Arial">GAP</font> 
corresponds exactly to the printed version in 
-<a href="biblio.htm#KD"><cite>KD</cite></a> where it is named &#955;.  In the 
example below, we consider 
-the group with parameters 
(<i>k</i><sub>1</sub>,<i>k</i><sub>2</sub>,<i>k</i><sub>3</sub>,<i>k</i><sub>4</sub>,<i>k</i><sub>5</sub>,<i>k</i><sub>6</sub>)=(8,0,1,0,1,0).
+<a href="biblio.htm#KD"><cite>KD</cite></a> where it is named 
<var>lambda</var>.  In the example below, we consider 
+the group with parameters 
<var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>,k<sub>5</sub>,k<sub>6</sub>)=(8,0,1,0,1,0)</var>.
 <p>
 <pre>
 gap&gt; G:=AlmostCrystallographicDim4("013",[8,0,1,0,1,0]);
@@ -277,15 +305,17 @@
 </pre>
 <p>
 For a 4-dimensional almost crystallographic group the matrix group is 
-built up such that { <i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>, &#945;, &#946;, 
&#947;} as described 
-in <a href="biblio.htm#KD"><cite>KD</cite></a> forms the defining generating 
set of <i>G</i>. For certain types 
-the elements &#945;, &#946; or &#947; may not be present.
-Similarly, for a 3-dimensional group we have the generating set { <i>a</i>, 
<i>b</i>, <i>c</i>, &#945;, &#946;} and &#945; and &#946; may be absent.
+built up such that <var>{ a, b, c, d, alpha, beta, gamma}</var> as described 
+in <a href="biblio.htm#KD"><cite>KD</cite></a> forms the defining generating 
set of <var>G</var>. For certain types 
+the elements <var>alpha</var>, <var>beta</var> or <var>gamma</var> may not be 
present.
+Similarly, for a 3-dimensional group we have the generating set <var>{ a, b, 
+c, alpha, beta}</var> and <var>alpha</var> and <var>beta</var> may be absent.
 <p>
 <p>
 To obtain a polycyclic generating sequence from the defining generators
 of the matrix group we have to order the elements in the generating set
-suitably. For this purpose we take the subsequence of (&#947;, &#946;, &#945;, 
<i>a</i>, <i>b</i>, <i>c</i>, <i>d</i>) of those generators which are present 
in the 
+suitably. For this purpose we take the subsequence of <var>(gamma, beta, 
+alpha, a, b, c, d)</var> of those generators which are present in the 
 defining generating set of the matrix group.  This new ordering of the 
 generators is then used to define a polycyclic presentation of the given 
 almost crystallographic group. 
@@ -293,5 +323,5 @@
 <p>
 [<a href = "chapters.htm">Up</a>] [<a href ="CHAP002.htm">Previous</a>] [<a 
href ="CHAP004.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
 <P>
-<address>aclib manual<br>January 2020
+<address>aclib manual<br>August 2025
 </address></body></html>
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/htm/CHAP004.htm 
new/aclib-1.3.3/htm/CHAP004.htm
--- old/aclib-1.3.2/htm/CHAP004.htm     2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/htm/CHAP004.htm     2025-08-28 16:43:19.000000000 +0200
@@ -19,7 +19,7 @@
 as torsion free in <a href="biblio.htm#KD"><cite>KD</cite></a> are also 
determined as torsion free
 ones by <font face="Gill Sans,Helvetica,Arial">GAP</font>. In <a 
href="biblio.htm#KD"><cite>KD</cite></a> these almost Bieberbach groups are 
listed as 
 ``AB-groups''. So for type ``013'' these are the groups with parameters 
-(<i>k</i>,0,1,0,1,0) where <i>k</i> is an even integer. Let's look at some 
examples 
+<var>(k,0,1,0,1,0)</var> where <var>k</var> is an even integer. Let's look at 
some examples 
 in <font face="Gill Sans,Helvetica,Arial">GAP</font>:
 <p>
 <pre>
@@ -35,15 +35,17 @@
 <p>
 Further, there is also some cohomology information in the tables 
 of <a href="biblio.htm#KD"><cite>KD</cite></a>. In fact, the groups in this 
library were obtained
-as extensions <i>E</i> of the form
+as extensions <var>E</var> of the form
 <p>
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"> 1 
&#8594; <b>Z</b>&#8594; <i>E</i> &#8594; <i>Q</i> &#8594; 1 
</td></tr></table></td></tr></table>
+<p><var>
+1 rightarrow<font face="helvetica,arial">Z</font>rightarrowE rightarrowQ 
rightarrow1
+<p></var>
 <p>
-where, in the 4-dimensional case <i>Q</i> = <i>E</i>/&#9001;<i>d</i> &#9002;. 
The 
+where, in the 4-dimensional case <var>Q = E/langled rangle</var>. The 
 cohomology information for the particular example above shows that 
-the groups determined by a parameter set 
(<i>k</i><sub>1</sub>,<i>k</i><sub>2</sub>,<i>k</i><sub>3</sub>,<i>k</i><sub>4</sub>,<i>k</i><sub>4</sub>,<i>k</i><sub>6</sub>)
 
+the groups determined by a parameter set 
<var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>,k<sub>4</sub>,k<sub>6</sub>)</var>
 
 are equivalent as extensions to the groups determined by the parameters 
-(<i>k</i><sub>1</sub>, <i>k</i><sub>2</sub>  mod 2, <i>k</i><sub>3</sub>  mod 
2, <i>k</i><sub>4</sub>  mod 2, <i>k</i><sub>5</sub>  mod 2, 0). This is 
+<var>(k<sub>1</sub>, k<sub>2</sub> bmod2, k<sub>3</sub> bmod2, k<sub>4</sub> 
bmod2, k<sub>5</sub> bmod2, 0)</var>. This is 
 also visible in finding torsion:
 <p>
 <pre>
@@ -64,16 +66,18 @@
 classification of the almost Bieberbach groups in <a 
href="biblio.htm#KD"><cite>KD</cite></a>. Using 
 <font face="Gill Sans,Helvetica,Arial">GAP</font>, it is now possible to check 
these computations. As an example we 
 consider the 4-dimensional almost crystallographic groups of type 85 on 
-page 202 of <a href="biblio.htm#KD"><cite>KD</cite></a>. This group <i>E</i> 
has 6 generators. In the table, one 
+page 202 of <a href="biblio.htm#KD"><cite>KD</cite></a>. This group 
<var>E</var> has 6 generators. In the table, one 
 also finds the information
 <p>
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
<i>H</i><sup>2</sup>(<i>Q</i>,<b>Z</b>) = 
<b>Z</b>&#8853;(<b>Z</b><sub>2</sub>)<sup>2</sup> &#8853;<b>Z</b><sub>4</sub> 
</td></tr></table></td></tr></table>
-<p>
-for <i>Q</i>=<i>E</i>/&#9001;<i>d</i> &#9002; as above. Moreover, the 
<i>Q</i>--module <b>Z</b> is 
-in fact the group &#9001;<i>d</i> &#9002;, where the <i>Q</i>-action comes 
from 
-conjugation inside <i>E</i>. In the case of groups of type 85, <b>Z</b> is a 
-trivial <i>Q</i>-module. The following example demonstrates how to (re)compute 
-this two-cohomology group <i>H</i><sup>2</sup>(<i>Q</i>,<b>Z</b>). 
+<p><var>
+H<sup>2</sup>(Q,<font face="helvetica,arial">Z</font>) = <font 
face="helvetica,arial">Z</font>oplus(<font 
face="helvetica,arial">Z</font><sub>2</sub>)<sup>2</sup> oplus<font 
face="helvetica,arial">Z</font><sub>4</sub>
+<p></var>
+<p>
+for <var>Q=E/langled rangle</var> as above. Moreover, the <var>Q</var>--module 
<var><font face="helvetica,arial">Z</font></var> is 
+in fact the group <var>langled rangle</var>, where the <var>Q</var>-action 
comes from 
+conjugation inside <var>E</var>. In the case of groups of type 85, <var><font 
face="helvetica,arial">Z</font></var> is a 
+trivial <var>Q</var>-module. The following example demonstrates how to 
(re)compute 
+this two-cohomology group <var>H<sup>2</sup>(Q,<font 
face="helvetica,arial">Z</font>)</var>. 
 <p>
 <pre>
 gap&gt; G:=AlmostCrystallographicPcpGroup(4, "085", false);
@@ -90,9 +94,11 @@
 </pre>
 <p>
 This last line gives us the abelian invariants of the second 
-cohomology group <i>H</i><sup>2</sup>(<i>Q</i>,<b>Z</b>). So we should read 
this line as 
+cohomology group <var>H<sup>2</sup>(Q,<font 
face="helvetica,arial">Z</font>)</var>. So we should read this line as 
 <p>
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"> 
<i>H</i><sup>2</sup>(<i>Q</i>,<b>Z</b>) = <b>Z</b><sub>2</sub> 
&#8853;<b>Z</b><sub>2</sub> &#8853;<b>Z</b><sub>4</sub> 
&#8853;<b>Z</b></td></tr></table></td></tr></table>
+<p><var>
+H<sup>2</sup>(Q,<font face="helvetica,arial">Z</font>) = <font 
face="helvetica,arial">Z</font><sub>2</sub> oplus<font 
face="helvetica,arial">Z</font><sub>2</sub> oplus<font 
face="helvetica,arial">Z</font><sub>4</sub> oplus<font 
face="helvetica,arial">Z</font>
+<p></var>
 <p>
 which indeed coincides with the information in <a 
href="biblio.htm#KD"><cite>KD</cite></a>.
 <p>
@@ -103,51 +109,54 @@
 <code>aclib</code> and <font face="Gill 
Sans,Helvetica,Arial">polycyclic</font> we check some computations of <a 
href="biblio.htm#DM"><cite>DM</cite></a>.
 <p>
 Section 5 of the paper <a href="biblio.htm#DM"><cite>DM</cite></a> is 
completely devoted to an example
-of the computation of the <i>P</i>-localization of a virtually nilpotent group,
-where <i>P</i> is a set of primes. Although it is not our intention to 
-develop the theory of <i>P</i>-localization of groups at this place, let us
+of the computation of the <var>P</var>-localization of a virtually nilpotent 
group,
+where <var>P</var> is a set of primes. Although it is not our intention to 
+develop the theory of <var>P</var>-localization of groups at this place, let us
 summarize some of the main results concerning this topic here.
 <p>
-For a set of primes <i>P</i>, we say that <i>n</i>  &#8712; <i>P</i> if and 
only if <i>n</i> is
-a product of primes in <i>P</i>. A group <i>G</i> is said to be <i>P</i>-local 
if and 
-only if the map &#956;<sub><i>n</i></sub>:<i>G</i>&#8594; <i>G</i>: <i>g</i> 
&#8594; <i>g</i><sup><i>n</i></sup> is bijective for 
-all <i>n</i>  &#8712; <i>P</i>&#8242;, where <i>P</i>&#8242; is the set of all 
primes not in <i>P</i>. The 
-<i>P</i>-localization of a group <i>G</i>, is a <i>P</i>-local group 
<i>G</i><sub><i>P</i></sub> together 
-with a morphism &#945;:<i>G</i> &#8594; <i>G</i><sub><i>P</i></sub> which 
satisfy the following 
-universal property: For each <i>P</i>-local group <i>L</i> and any morphism 
-&#966;: <i>G</i> &#8594; <i>L</i>, there exists a unique morphism 
&#968;:<i>G</i><sub><i>P</i></sub> &#8594; <i>L</i>, such that 
&#968;&#176;&#945; =  &#966;.
+For a set of primes <var>P</var>, we say that <var>n inP</var> if and only if 
<var>n</var> is
+a product of primes in <var>P</var>. A group <var>G</var> is said to be 
<var>P</var>-local if and 
+only if the map <var>mu<sub>n</sub>:GrightarrowG: g mapstog<sup>n</sup></var> 
is bijective for 
+all <var>n inP'</var>, where <var>P'</var> is the set of all primes not in 
<var>P</var>. The 
+<var>P</var>-localization of a group <var>G</var>, is a <var>P</var>-local 
group <var>G<sub>P</sub></var> together 
+with a morphism <var>alpha:G rightarrowG<sub>P</sub></var> which satisfy the 
following 
+universal property: For each <var>P</var>-local group <var>L</var> and any 
morphism 
+<var>varphi: G rightarrowL</var>, there exists a unique morphism 
<var>psi:G<sub>P</sub> 
+rightarrowL</var>, such that <var>psicircalpha= varphi</var>.
 <p>
 This concept of localization is well developed for finite groups and 
-for nilpotent groups. For a finite group <i>G</i>, the <i>P</i>-localization 
is 
-the largest quotient of <i>G</i>, having no elements with an order belonging 
to 
-<i>P</i>&#8242; (the morphism &#945;, mentioned above is the natural 
projection).
+for nilpotent groups. For a finite group <var>G</var>, the 
<var>P</var>-localization is 
+the largest quotient of <var>G</var>, having no elements with an order 
belonging to 
+<var>P'</var> (the morphism <var>alpha</var>, mentioned above is the natural 
projection).
 <p>
 In <a href="biblio.htm#DM"><cite>DM</cite></a> a contribution is made towards 
the localization of virtually 
 nilpotent groups. The theory developed in the paper is then illustrated 
 in the last section of the paper by means of the computation of the 
-<i>P</i>-localization of an almost crystallographic group. For their example
-the authors have chosen an almost crystallographic group <i>G</i> of dimension 
3
-and type 17. For the set of parameters 
(<i>k</i><sub>1</sub>,<i>k</i><sub>2</sub>,<i>k</i><sub>3</sub>,<i>k</i><sub>4</sub>)
 they have
-considered all cases of the form 
(<i>k</i><sub>1</sub>,<i>k</i><sub>2</sub>,<i>k</i><sub>3</sub>,<i>k</i><sub>4</sub>)=(2,0,0,<i>k</i><sub>4</sub>).
 
-<p>
-Here we will check their computations in two cases <i>k</i><sub>4</sub>=0 and 
<i>k</i><sub>4</sub>=1
-using the set of primes <i>P</i>={2}. The holonomy group of these almost 
-crystallographic groups <i>G</i> is the dihedral group <span 
style="font-family:helvetica"><i>D</i></span><sub>6</sub> of order 
+<var>P</var>-localization of an almost crystallographic group. For their 
example
+the authors have chosen an almost crystallographic group <var>G</var> of 
dimension 3
+and type 17. For the set of parameters 
<var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)</var> they have
+considered all cases of the form 
<var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)=(2,0,0,k<sub>4</sub>)</var>.
 
+<p>
+Here we will check their computations in two cases <var>k<sub>4</sub>=0</var> 
and <var>k<sub>4</sub>=1</var>
+using the set of primes <var>P={2}</var>. The holonomy group of these almost 
+crystallographic groups <var>G</var> is the dihedral group 
<var>calD<sub>6</sub></var> of order 
 12. Thus there is a short exact sequence of the form 
-<br clear="all" /><table border="0" width="100%"><tr><td><table align="center" 
cellspacing="0"  cellpadding="2"><tr><td nowrap="nowrap" align="center"> 1 
&#8594; <span class="roman">Fitt</span>(<i>G</i>) &#8594; <i>G</i> &#8594; 
<span style="font-family:helvetica"><i>D</i></span><sub>6</sub> &#8594; 
1&#183;</td></tr></table></td></tr></table>
+<p><var> 1 rightarrowFitt(G) rightarrowG 
+     rightarrowcalD<sub>6</sub> rightarrow1. <p></var>
 <p>
 As a first step in their computation, Descheemaeker and Malfait determine
-the group <i>I</i><sub><i>P</i>&#8242;</sub><span 
style="font-family:helvetica"><i>D</i></span><sub>6</sub>, which is the unique 
subgroup of order 3 in
-<span style="font-family:helvetica"><i>D</i></span><sub>6</sub>. One of the 
main objects in <a href="biblio.htm#DM"><cite>DM</cite></a> is the group 
<i>K</i>=<i>p</i><sup>&#8722;1</sup> (<i>I</i><sub><i>P</i>&#8242;</sub><span 
style="font-family:helvetica"><i>D</i></span><sub>6</sub>), where <i>p</i> is 
the natural projection of <i>G</i> onto its 
-holonomy group. It is known that the <i>P</i>-localization of <i>G</i> 
coincides 
-with the <i>P</i>-localization of <i>G</i>/&#947;<sub>3</sub>(<i>K</i>), where 
&#947;<sub>3</sub>(<i>K</i>) is the 
-third term in the lower central series of <i>K</i>. As 
<i>G</i>/&#947;<sub>3</sub>(<i>K</i>) is 
-finite in this example, we exactly know what this <i>P</i>-localization is. 
-Let us now show, how GAP can be used to compute this <i>P</i>-localization in 
+the group <var>I<sub>P'</sub>calD<sub>6</sub></var>, which is the unique 
subgroup of order 3 in
+<var>calD<sub>6</sub></var>. One of the main objects in <a 
href="biblio.htm#DM"><cite>DM</cite></a> is the group <var>K=p<sup>-1</sup> 
+(I<sub>P'</sub>calD<sub>6</sub>)</var>, where <var>p</var> is the natural 
projection of <var>G</var> onto its 
+holonomy group. It is known that the <var>P</var>-localization of <var>G</var> 
coincides 
+with the <var>P</var>-localization of <var>G/gamma<sub>3</sub>(K)</var>, where 
<var>gamma<sub>3</sub>(K)</var> is the 
+third term in the lower central series of <var>K</var>. As 
<var>G/gamma<sub>3</sub>(K)</var> is 
+finite in this example, we exactly know what this <var>P</var>-localization 
is. 
+Let us now show, how GAP can be used to compute this <var>P</var>-localization 
in 
 two cases:
 <p>
 <p>
-First case: The parameters are 
(<i>k</i><sub>1</sub>,<i>k</i><sub>2</sub>,<i>k</i><sub>3</sub>,<i>k</i><sub>4</sub>)=(2,0,0,0)
+First case: The parameters are 
<var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)=(2,0,0,0)</var>
 <pre>
 gap&gt; G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,0] );
 Pcp group with orders [ 2, 6, 0, 0, 0 ]
@@ -184,10 +193,10 @@
 g2 ^ 2 = identity
 g3 ^ 2 = identity
 </pre>
-This shows that <i>G</i><sub><i>P</i></sub> &#8773; 
<b>Z</b><sub>2</sub><sup>3</sup>.
+This shows that <var>G<sub>P</sub>cong<font 
face="helvetica,arial">Z</font><sub>2</sub><sup>3</sup></var>.
 <p>
 <p>
-Second case: The parameters are 
(<i>k</i><sub>1</sub>,<i>k</i><sub>2</sub>,<i>k</i><sub>3</sub>,<i>k</i><sub>4</sub>)=(2,0,0,1)
+Second case: The parameters are 
<var>(k<sub>1</sub>,k<sub>2</sub>,k<sub>3</sub>,k<sub>4</sub>)=(2,0,0,1)</var>
 <pre>
 gap&gt; G := AlmostCrystallographicPcpGroup(3, 17, [2,0,0,1]);;
 gap&gt; projection := NaturalHomomorphismOnHolonomyGroup( G );;
@@ -209,7 +218,7 @@
 g2 ^ g1^-1 = g2*g3
 </pre>
 <p>
-In this case, we see that <i>G</i><sub><i>P</i></sub>=<span 
style="font-family:helvetica"><i>D</i></span><sub>4</sub>.
+In this case, we see that <var>G<sub>P</sub>=calD<sub>4</sub></var>.
 <p>
 <p>
 The reader can check that these results coincide with those obtained in 
@@ -220,5 +229,5 @@
 <p>
 [<a href = "chapters.htm">Up</a>] [<a href ="CHAP003.htm">Previous</a>] [<a 
href = "theindex.htm">Index</a>]
 <P>
-<address>aclib manual<br>January 2020
+<address>aclib manual<br>August 2025
 </address></body></html>
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/htm/biblio.htm 
new/aclib-1.3.3/htm/biblio.htm
--- old/aclib-1.3.2/htm/biblio.htm      2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/htm/biblio.htm      2025-08-28 16:43:19.000000000 +0200
@@ -32,7 +32,7 @@
 
 <dt><a name="DM"><b>[DM]</b></a><dd>
 An&nbsp;Descheemaeker and Wim Malfait.
-<br> <i>P</i>-localization of relative groups.
+<br> P-localization of relative groups.
 <br> <em>Journal of Pure and Applied Algebra</em>, 159(1), 2001.
 
 <dt><a name="LEE"><b>[LEE]</b></a><dd>
@@ -44,5 +44,5 @@
 </dl><p>
 [<a href="chapters.htm">Up</a>]<p>
 <P>
-<address>aclib manual<br>January 2020
+<address>aclib manual<br>August 2025
 </address></body></html>
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/htm/chapters.htm 
new/aclib-1.3.3/htm/chapters.htm
--- old/aclib-1.3.2/htm/chapters.htm    2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/htm/chapters.htm    2025-08-28 16:43:19.000000000 +0200
@@ -15,5 +15,5 @@
 <li><a href="theindex.htm">Index</a>
 </ul><p>
 <P>
-<address>aclib manual<br>January 2020
+<address>aclib manual<br>August 2025
 </address></body></html>
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/htm/theindex.htm 
new/aclib-1.3.3/htm/theindex.htm
--- old/aclib-1.3.2/htm/theindex.htm    2020-01-28 17:12:12.000000000 +0100
+++ new/aclib-1.3.3/htm/theindex.htm    2025-08-28 16:43:19.000000000 +0200
@@ -83,5 +83,5 @@
 </dl><p>
 [<a href="chapters.htm">Up</a>]<p>
 <P>
-<address>aclib manual<br>January 2020
+<address>aclib manual<br>August 2025
 </address></body></html>
\ No newline at end of file
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/aclib-1.3.2/tst/manual.example-3.tst 
new/aclib-1.3.3/tst/manual.example-3.tst
--- old/aclib-1.3.2/tst/manual.example-3.tst    2020-01-28 17:11:50.000000000 
+0100
+++ new/aclib-1.3.3/tst/manual.example-3.tst    2025-08-28 16:43:19.000000000 
+0200
@@ -47,6 +47,7 @@
 Pcp-group with orders [ 2 ]
 gap> PreImage( hom, U );
 Pcp-group with orders [ 2, 0, 0, 0, 0 ]
+gap> Reset(GlobalMersenneTwister,1);;
 gap> G := AlmostCrystallographicGroup( 4, 70, false );
 <matrix group of size infinity with 5 generators>
 gap> IsAlmostCrystallographic(G);

++++++ build.specials.obscpio ++++++
diff -urN '--exclude=CVS' '--exclude=.cvsignore' '--exclude=.svn' 
'--exclude=.svnignore' old/.gitignore new/.gitignore
--- old/.gitignore      1970-01-01 01:00:00.000000000 +0100
+++ new/.gitignore      2025-09-07 17:40:24.000000000 +0200
@@ -0,0 +1 @@
+.osc

Reply via email to