Script 'mail_helper' called by obssrc Hello community, here is the log from the commit of package python-scikit-learn for openSUSE:Factory checked in at 2022-10-29 20:16:04 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Comparing /work/SRC/openSUSE:Factory/python-scikit-learn (Old) and /work/SRC/openSUSE:Factory/.python-scikit-learn.new.2275 (New) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Package is "python-scikit-learn" Sat Oct 29 20:16:04 2022 rev:20 rq:1032043 version:1.1.3 Changes: -------- --- /work/SRC/openSUSE:Factory/python-scikit-learn/python-scikit-learn.changes 2022-10-27 13:53:23.116326617 +0200 +++ /work/SRC/openSUSE:Factory/.python-scikit-learn.new.2275/python-scikit-learn.changes 2022-10-29 20:17:06.050208776 +0200 @@ -1,0 +2,8 @@ +Thu Oct 27 18:40:17 UTC 2022 - Ben Greiner <c...@bnavigator.de> + +- Update to version 1.1.3 + * This bugfix release only includes fixes for compatibility with + the latest SciPy release >= 1.9.2. +- Update sklearn-pr24283-gradient-segfault.patch + +------------------------------------------------------------------- Old: ---- scikit-learn-1.1.2.tar.gz New: ---- scikit-learn-1.1.3.tar.gz ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Other differences: ------------------ ++++++ python-scikit-learn.spec ++++++ --- /var/tmp/diff_new_pack.I25QIz/_old 2022-10-29 20:17:06.838212975 +0200 +++ /var/tmp/diff_new_pack.I25QIz/_new 2022-10-29 20:17:06.846213017 +0200 @@ -43,7 +43,7 @@ # enable pytest color output for local debugging: osc --with pytestcolor %bcond_with pytestcolor Name: python-scikit-learn%{psuffix} -Version: 1.1.2 +Version: 1.1.3 Release: 0 Summary: Python modules for machine learning and data mining License: BSD-3-Clause @@ -104,6 +104,7 @@ %build %if !%{with test} +export CFLAGS="%{optflags}" %python_build %endif ++++++ scikit-learn-1.1.2.tar.gz -> scikit-learn-1.1.3.tar.gz ++++++ /work/SRC/openSUSE:Factory/python-scikit-learn/scikit-learn-1.1.2.tar.gz /work/SRC/openSUSE:Factory/.python-scikit-learn.new.2275/scikit-learn-1.1.3.tar.gz differ: char 5, line 1 ++++++ sklearn-pr24283-gradient-segfault.patch ++++++ --- /var/tmp/diff_new_pack.I25QIz/_old 2022-10-29 20:17:06.930213465 +0200 +++ /var/tmp/diff_new_pack.I25QIz/_new 2022-10-29 20:17:06.934213486 +0200 @@ -23,58 +23,4 @@ <X_BINNED_DTYPE_C>data_val, node.bitset_idx): Index: scikit-learn-1.1.2/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py -=================================================================== ---- scikit-learn-1.1.2.orig/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py -+++ scikit-learn-1.1.2/sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py -@@ -1159,3 +1159,28 @@ def test_no_user_warning_with_scoring(): - with warnings.catch_warnings(): - warnings.simplefilter("error", UserWarning) - est.fit(X_df, y) -+ -+ -+def test_unknown_category_that_are_negative(): -+ """Check that unknown categories that are negative does not error. -+ -+ Non-regression test for #24274. -+ """ -+ rng = np.random.RandomState(42) -+ n_samples = 1000 -+ X = np.c_[rng.rand(n_samples), rng.randint(4, size=n_samples)] -+ y = np.zeros(shape=n_samples) -+ y[X[:, 1] % 2 == 0] = 1 -+ -+ hist = HistGradientBoostingRegressor( -+ random_state=0, -+ categorical_features=[False, True], -+ max_iter=10, -+ ).fit(X, y) -+ -+ # Check that negative values from the second column are treated like a -+ # missing category -+ X_test_neg = np.asarray([[1, -2], [3, -4]]) -+ X_test_nan = np.asarray([[1, np.nan], [3, np.nan]]) -+ -+ assert_allclose(hist.predict(X_test_neg), hist.predict(X_test_nan)) -Index: scikit-learn-1.1.2/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py -=================================================================== ---- scikit-learn-1.1.2.orig/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py -+++ scikit-learn-1.1.2/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py -@@ -1186,6 +1186,8 @@ class HistGradientBoostingRegressor(Regr - - For each categorical feature, there must be at most `max_bins` unique - categories, and each categorical value must be in [0, max_bins -1]. -+ During prediction, categories encoded as a negative value are treated as -+ missing values. - - Read more in the :ref:`User Guide <categorical_support_gbdt>`. - -@@ -1515,6 +1517,8 @@ class HistGradientBoostingClassifier(Cla - - For each categorical feature, there must be at most `max_bins` unique - categories, and each categorical value must be in [0, max_bins -1]. -+ During prediction, categories encoded as a negative value are treated as -+ missing values. - - Read more in the :ref:`User Guide <categorical_support_gbdt>`. -