coffezhou opened a new issue, #18003:
URL: https://github.com/apache/tvm/issues/18003

   ### Expected behavior
   
   The output of the TVM CPU backend should be identical with those of 
onnxruntime and TVM CUDA backend. 
   
   ### Actual behavior
   
   For the following model:
   
   
![Image](https://github.com/user-attachments/assets/90483fe9-512e-4ddb-b586-0f62e44249fe)
   when compile the model for the CPU target, the output is:
   ```c
    [[[[False]]]]
   ```
   However, the outputs of onnxruntime and TVM CUDA backend are as follows:
   ```c
    [[[[ True]]]]
   ```
   
   ### Environment
   OS: Ubuntu 20.04
   TVM: 0.21.dev0 (3db71bb3a)
   onnxruntime: 1.21.0
   CUDA: 11.8
   GPU: NVIDIA GeForce RTX 3080
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment.
   ```python
   import sys
   
   import numpy as np
   import onnx
   import onnxruntime
   
   import tvm
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import pickle
   
               
   def main():
       onnx_model = onnx.load("a2631.onnx")
       
       shape_onnx_model = onnx.shape_inference.infer_shapes(onnx_model)
       onnx.save(shape_onnx_model, '1111.onnx')
       
       with open("inputs.pkl", "rb") as fp:
           inputs = pickle.load(fp)
       
       try:
           ort_session = onnxruntime.InferenceSession(
               onnx_model.SerializeToString(), 
providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           sys.exit(1)
       print("ONNXRuntime:\n", ort_output)   
       # Convert the onnx model into relax through the onnx importer.
       tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
       # Convert operators for inference mode.
       tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
       # Legalize any relax ops into tensorir.
       tvm_model = relax.transform.LegalizeOps()(tvm_model)
       
       # Separate model from parameters.
       tvm_model, params = relax.frontend.detach_params(tvm_model)
       
       # Prepare inputs.
       input_list = [
           inputs[key.name_hint] for key in tvm_model["main"].params if 
key.name_hint in inputs
       ]
       if params:
           input_list += params["main"]
           
       # Compile the relax graph into a VM then run.
       #----------------------cpu-----------------------
       with tvm.transform.PassContext(opt_level=2):
           target = tvm.target.Target("llvm", host="llvm")
           relax_pipeline = relax.pipeline.get_default_pipeline(target)
           
           ex = relax.build(tvm_model, target="llvm", 
relax_pipeline=relax_pipeline)
           vm = relax.VirtualMachine(ex, tvm.cpu())
       
           # Run model and check outputs.
           vm.set_input("main", *input_list)
           vm.invoke_stateful("main")
           tvm_cpu_output = vm.get_outputs("main")
           print("TVM-CPU:\n", tvm_cpu_output)
       #----------------------cpu-----------------------
       
       #----------------------cuda-----------------------
       with tvm.target.Target("cuda"):
           tvm_model = tvm.tir.transform.DefaultGPUSchedule()(tvm_model) 
   
           with tvm.transform.PassContext(opt_level=3):
               ex = tvm.compile(tvm_model, target="cuda")
               vm1 = relax.VirtualMachine(ex, tvm.cuda())
               
           vm1.set_input("main", *input_list)
           vm1.invoke_stateful("main")
           tvm_gpu_output = vm1.get_outputs("main")
           print("TVM-CUDA:\n", tvm_gpu_output)
       #----------------------cuda-----------------------
       
   if __name__ == "__main__":
       
       main()
   ```
   
   
[testcase.zip](https://github.com/user-attachments/files/20359142/testcase.zip)
   
   ### Triage
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to