coffezhou opened a new issue, #18132:
URL: https://github.com/apache/tvm/issues/18132

   
   ### Expected behavior
   
   TVM should run the model correctly.
   
   ### Actual behavior
   For the following model,
   
   <img width="269" height="460" alt="Image" 
src="https://github.com/user-attachments/assets/ba94f29e-b7c9-4c77-b222-ad028c7cc03d";
 />
   
   it can be executed by onnxruntime, the results are as follows:
   ```c
   ONNXRuntime:
    [array([[[[False, False, False, False],
            [False, False, False, False],
            [False, False, False, False],
            [False, False, False, False]]]])]
   ```
   However, when compiling and running the model using TVM, TVM crashes:
   ```c
     File "/home/carla/Documents/tvm/python/tvm/runtime/vm.py", line 295, in 
invoke_stateful
       self._invoke_stateful(func_name)
     File "tvm/ffi/cython/./function.pxi", line 228, in 
tvm.ffi.core.Function.__call__
   tvm.error.InternalError: Check failed: (offset + needed_size <= 
this->buffer.size) is false: storage allocation failure, attempted to allocate 
18446744073709551553 at offset 0 in region that is 0bytes
   ```
   
   ### Environment
   
   OS: Ubuntu 20.04
   TVM: 0.22.dev0 (c6969d723)
   onnxruntime: 1.21.0
   
   ### Steps to reproduce
   
   This bug can be reproduced by the following code with the model in the 
attachment. As shown in the code, the model can be executed by onnxruntime. 
However, TVM crashes when calling the invoke_stateful function.
   ```python
   import sys
   
   import numpy as np
   import onnx
   import onnxruntime
   
   import tvm
   from tvm import relax
   from tvm.relax.frontend.onnx import from_onnx
   
   import pickle
   
               
   def main():
       onnx_model = onnx.load("111.onnx")
       
       with open("inputs.pkl", "rb") as fp:
           inputs = pickle.load(fp)
       print(inputs)
       try:
           ort_session = onnxruntime.InferenceSession(
               onnx_model.SerializeToString(), 
providers=["CPUExecutionProvider"]
           )
           ort_output = ort_session.run([], inputs)
       except Exception as e:
           print(e)
           sys.exit(1)
           
       print("ONNXRuntime:\n", ort_output)   
   
       # Convert the onnx model into relax through the onnx importer.
       tvm_model = from_onnx(onnx_model, keep_params_in_input=True)
       # Convert operators for inference mode.
       tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
       # Legalize any relax ops into tensorir.
       tvm_model = relax.transform.LegalizeOps()(tvm_model)
   
       # Separate model from parameters.
       tvm_model, params = relax.frontend.detach_params(tvm_model)
       
       # Prepare inputs.
       input_list = [
           inputs[key.name_hint] for key in tvm_model["main"].params if 
key.name_hint in inputs
       ]
       if params:
           input_list += params["main"]
           
       # Compile the relax graph into a VM then run.
       #----------------------cpu-----------------------
       with tvm.transform.PassContext(opt_level=0):
           target = tvm.target.Target("llvm", host="llvm")
           relax_pipeline = relax.pipeline.get_default_pipeline(target)
           
           ex = relax.build(tvm_model, target="llvm", 
relax_pipeline=relax_pipeline)
           vm = relax.VirtualMachine(ex, tvm.cpu())
       
           # Run model and check outputs.
           vm.set_input("main", *input_list)
           vm.invoke_stateful("main")
           tvm_cpu_output = vm.get_outputs("main")
   
       
   if __name__ == "__main__":
       
       main()
   
   ```
   
   
[testcase.zip](https://github.com/user-attachments/files/21178457/testcase.zip)
   
   ### Triage
   
   Please refer to the list of label tags 
[here](https://github.com/apache/tvm/wiki/Issue-Triage-Labels) to find the 
relevant tags and add them below in a bullet format (example below).
   
   * needs-triage
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to