tlopex opened a new pull request, #18288:
URL: https://github.com/apache/tvm/pull/18288

   This PR adds symbolic shape support to `BasePyModule`, which enables dynamic 
tensor operations with runtime shape inference. This allows users to use 
Relax's symbolic shape functionality in Python function calls through 
BasePyModule, with dimensions automatically resolved at execution time based on 
input tensor shapes.
   
   ## Usage Example
   ```python
   import tvm
   from tvm.script import ir as I, relax as R
   from tvm.relax.base_py_module import BasePyModule
   import numpy as np
   
   @I.ir_module
   class VectorAddModule(BasePyModule):
       @R.function
       def add(x: R.Tensor(("n",), "float32"), 
               y: R.Tensor(("n",), "float32")) -> R.Tensor(("n",), "float32"):
           return R.add(x, y)
   
   module = VectorAddModule(device=tvm.cpu(0), target="llvm")
   
   a = np.array([1.0, 2.0, 3.0], dtype="float32")
   b = np.array([4.0, 5.0, 6.0], dtype="float32")
   result = module.add(a, b)  # Result: [5.0, 7.0, 9.0]
   ```


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to