[ 
https://issues.apache.org/jira/browse/AIRFLOW-3624?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16832361#comment-16832361
 ] 

ASF subversion and git services commented on AIRFLOW-3624:
----------------------------------------------------------

Commit b54051c0d055ed00ccc137de733fa94b5f07ba02 in airflow's branch 
refs/heads/v1-10-stable from K.K. POON
[ https://gitbox.apache.org/repos/asf?p=airflow.git;h=b54051c ]

[AIRFLOW-3624] Add masterType parameter to MLEngineTrainingOperator (#4428)


(cherry picked from commit 67d8ab760b372919c1d500bd9901dbae48a4517d)


> Add masterType parameter to MLEngineTrainingOperator
> ----------------------------------------------------
>
>                 Key: AIRFLOW-3624
>                 URL: https://issues.apache.org/jira/browse/AIRFLOW-3624
>             Project: Apache Airflow
>          Issue Type: Improvement
>          Components: gcp, operators
>            Reporter: K.K. POON
>            Priority: Major
>              Labels: pull-request-available
>             Fix For: 1.10.4
>
>
> Ref to document 
> https://cloud.google.com/ml-engine/docs/tensorflow/machine-types
> When the scale_tier is set to CUSTOM, user should specify masterType
> {quote}The CUSTOM tier is not a set tier, but rather enables you to use your 
> own cluster specification. When you use this tier, set values to configure 
> your processing cluster according to these guidelines:
> {quote} * 
> {quote}You must set {{TrainingInput.masterType}} to specify the type of 
> machine to use for your master node. This is the only required setting. See 
> the [machine 
> types|https://cloud.google.com/ml-engine/docs/tensorflow/machine-types#machine_type_table]
>  described below.{quote}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to