MaksYermak commented on a change in pull request #20077: URL: https://github.com/apache/airflow/pull/20077#discussion_r786061371
########## File path: airflow/providers/google/cloud/operators/vertex_ai/custom_job.py ########## @@ -0,0 +1,594 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# +"""This module contains Google Vertex AI operators.""" + +from typing import Dict, List, Optional, Sequence, Tuple, Union + +from google.api_core.exceptions import NotFound +from google.api_core.retry import Retry +from google.cloud.aiplatform.models import Model +from google.cloud.aiplatform_v1.types.dataset import Dataset +from google.cloud.aiplatform_v1.types.training_pipeline import TrainingPipeline + +from airflow.models import BaseOperator, BaseOperatorLink +from airflow.models.taskinstance import TaskInstance +from airflow.providers.google.cloud.hooks.vertex_ai.custom_job import CustomJobHook + +VERTEX_AI_BASE_LINK = "https://console.cloud.google.com/vertex-ai" +VERTEX_AI_MODEL_LINK = ( + VERTEX_AI_BASE_LINK + "/locations/{region}/models/{model_id}/deploy?project={project_id}" +) +VERTEX_AI_TRAINING_PIPELINES_LINK = VERTEX_AI_BASE_LINK + "/training/training-pipelines?project={project_id}" + + +class VertexAIModelLink(BaseOperatorLink): + """Helper class for constructing Vertex AI Model link""" + + name = "Vertex AI Model" + + def get_link(self, operator, dttm): + ti = TaskInstance(task=operator, execution_date=dttm) + model_conf = ti.xcom_pull(task_ids=operator.task_id, key="model_conf") + return ( + VERTEX_AI_MODEL_LINK.format( + region=model_conf["region"], + model_id=model_conf["model_id"], + project_id=model_conf["project_id"], + ) + if model_conf + else "" + ) + + +class VertexAITrainingPipelinesLink(BaseOperatorLink): + """Helper class for constructing Vertex AI Training Pipelines link""" + + name = "Vertex AI Training Pipelines" + + def get_link(self, operator, dttm): + ti = TaskInstance(task=operator, execution_date=dttm) + project_id = ti.xcom_pull(task_ids=operator.task_id, key="project_id") + return ( + VERTEX_AI_TRAINING_PIPELINES_LINK.format( + project_id=project_id, + ) + if project_id + else "" + ) + + +class CustomTrainingJobBaseOperator(BaseOperator): + """The base class for operators that launch Custom jobs on VertexAI.""" + + def __init__( + self, + *, + project_id: str, + region: str, + display_name: str, + container_uri: str, + model_serving_container_image_uri: Optional[str] = None, + model_serving_container_predict_route: Optional[str] = None, + model_serving_container_health_route: Optional[str] = None, + model_serving_container_command: Optional[Sequence[str]] = None, + model_serving_container_args: Optional[Sequence[str]] = None, + model_serving_container_environment_variables: Optional[Dict[str, str]] = None, + model_serving_container_ports: Optional[Sequence[int]] = None, + model_description: Optional[str] = None, + model_instance_schema_uri: Optional[str] = None, + model_parameters_schema_uri: Optional[str] = None, + model_prediction_schema_uri: Optional[str] = None, + labels: Optional[Dict[str, str]] = None, + training_encryption_spec_key_name: Optional[str] = None, + model_encryption_spec_key_name: Optional[str] = None, + staging_bucket: Optional[str] = None, + # RUN + dataset_id: Optional[str] = None, + annotation_schema_uri: Optional[str] = None, + model_display_name: Optional[str] = None, + model_labels: Optional[Dict[str, str]] = None, + base_output_dir: Optional[str] = None, + service_account: Optional[str] = None, + network: Optional[str] = None, + bigquery_destination: Optional[str] = None, + args: Optional[List[Union[str, float, int]]] = None, + environment_variables: Optional[Dict[str, str]] = None, + replica_count: int = 1, + machine_type: str = "n1-standard-4", + accelerator_type: str = "ACCELERATOR_TYPE_UNSPECIFIED", + accelerator_count: int = 0, + boot_disk_type: str = "pd-ssd", + boot_disk_size_gb: int = 100, + training_fraction_split: Optional[float] = None, + validation_fraction_split: Optional[float] = None, + test_fraction_split: Optional[float] = None, + training_filter_split: Optional[str] = None, + validation_filter_split: Optional[str] = None, + test_filter_split: Optional[str] = None, + predefined_split_column_name: Optional[str] = None, + timestamp_split_column_name: Optional[str] = None, + tensorboard: Optional[str] = None, + sync=True, + gcp_conn_id: str = "google_cloud_default", + delegate_to: Optional[str] = None, + impersonation_chain: Optional[Union[str, Sequence[str]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.project_id = project_id + self.region = region + self.display_name = display_name + # START Custom + self.container_uri = container_uri + self.model_serving_container_image_uri = model_serving_container_image_uri + self.model_serving_container_predict_route = model_serving_container_predict_route + self.model_serving_container_health_route = model_serving_container_health_route + self.model_serving_container_command = model_serving_container_command + self.model_serving_container_args = model_serving_container_args + self.model_serving_container_environment_variables = model_serving_container_environment_variables + self.model_serving_container_ports = model_serving_container_ports + self.model_description = model_description + self.model_instance_schema_uri = model_instance_schema_uri + self.model_parameters_schema_uri = model_parameters_schema_uri + self.model_prediction_schema_uri = model_prediction_schema_uri + self.labels = labels + self.training_encryption_spec_key_name = training_encryption_spec_key_name + self.model_encryption_spec_key_name = model_encryption_spec_key_name + self.staging_bucket = staging_bucket + # END Custom + # START Run param + self.dataset = Dataset(name=dataset_id) if dataset_id else None + self.annotation_schema_uri = annotation_schema_uri + self.model_display_name = model_display_name + self.model_labels = model_labels + self.base_output_dir = base_output_dir + self.service_account = service_account + self.network = network + self.bigquery_destination = bigquery_destination + self.args = args + self.environment_variables = environment_variables + self.replica_count = replica_count + self.machine_type = machine_type + self.accelerator_type = accelerator_type + self.accelerator_count = accelerator_count + self.boot_disk_type = boot_disk_type + self.boot_disk_size_gb = boot_disk_size_gb + self.training_fraction_split = training_fraction_split + self.validation_fraction_split = validation_fraction_split + self.test_fraction_split = test_fraction_split + self.training_filter_split = training_filter_split + self.validation_filter_split = validation_filter_split + self.test_filter_split = test_filter_split + self.predefined_split_column_name = predefined_split_column_name + self.timestamp_split_column_name = timestamp_split_column_name + self.tensorboard = tensorboard + self.sync = sync + # END Run param + self.gcp_conn_id = gcp_conn_id + self.delegate_to = delegate_to + self.impersonation_chain = impersonation_chain + self.hook: Optional[CustomJobHook] = None + + def execute(self, context): + self.hook = CustomJobHook( + gcp_conn_id=self.gcp_conn_id, + delegate_to=self.delegate_to, + impersonation_chain=self.impersonation_chain, + ) + + def on_kill(self) -> None: + """ + Callback called when the operator is killed. + Cancel any running job. + """ + if self.hook: + self.hook.cancel_job() + + +class CreateCustomContainerTrainingJobOperator(CustomTrainingJobBaseOperator): + """Create Custom Container Training job""" + + template_fields = [ + 'region', + 'command', + 'impersonation_chain', + ] + operator_extra_links = (VertexAIModelLink(),) + + def __init__( + self, + *, + command: Sequence[str] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.command = command + + def execute(self, context): + super().execute(context) + model = self.hook.create_custom_container_training_job( + project_id=self.project_id, + region=self.region, + display_name=self.display_name, + container_uri=self.container_uri, + command=self.command, + model_serving_container_image_uri=self.model_serving_container_image_uri, + model_serving_container_predict_route=self.model_serving_container_predict_route, + model_serving_container_health_route=self.model_serving_container_health_route, + model_serving_container_command=self.model_serving_container_command, + model_serving_container_args=self.model_serving_container_args, + model_serving_container_environment_variables=self.model_serving_container_environment_variables, + model_serving_container_ports=self.model_serving_container_ports, + model_description=self.model_description, + model_instance_schema_uri=self.model_instance_schema_uri, + model_parameters_schema_uri=self.model_parameters_schema_uri, + model_prediction_schema_uri=self.model_prediction_schema_uri, + labels=self.labels, + training_encryption_spec_key_name=self.training_encryption_spec_key_name, + model_encryption_spec_key_name=self.model_encryption_spec_key_name, + staging_bucket=self.staging_bucket, + # RUN + dataset=self.dataset, + annotation_schema_uri=self.annotation_schema_uri, + model_display_name=self.model_display_name, + model_labels=self.model_labels, + base_output_dir=self.base_output_dir, + service_account=self.service_account, + network=self.network, + bigquery_destination=self.bigquery_destination, + args=self.args, + environment_variables=self.environment_variables, + replica_count=self.replica_count, + machine_type=self.machine_type, + accelerator_type=self.accelerator_type, + accelerator_count=self.accelerator_count, + boot_disk_type=self.boot_disk_type, + boot_disk_size_gb=self.boot_disk_size_gb, + training_fraction_split=self.training_fraction_split, + validation_fraction_split=self.validation_fraction_split, + test_fraction_split=self.test_fraction_split, + training_filter_split=self.training_filter_split, + validation_filter_split=self.validation_filter_split, + test_filter_split=self.test_filter_split, + predefined_split_column_name=self.predefined_split_column_name, + timestamp_split_column_name=self.timestamp_split_column_name, + tensorboard=self.tensorboard, + sync=True, + ) + + result = Model.to_dict(model) + model_id = self.hook.extract_model_id(result) + self.xcom_push( + context, + key="model_conf", + value={ + "model_id": model_id, + "region": self.region, + "project_id": self.project_id, + }, + ) + return result + + +class CreateCustomPythonPackageTrainingJobOperator(CustomTrainingJobBaseOperator): + """Create Custom Python Package Training job""" + + template_fields = [ + 'region', + 'impersonation_chain', + ] + operator_extra_links = (VertexAIModelLink(),) + + def __init__( + self, + *, + python_package_gcs_uri: str, + python_module_name: str, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.python_package_gcs_uri = python_package_gcs_uri + self.python_module_name = python_module_name + + def execute(self, context): + super().execute(context) + model = self.hook.create_custom_python_package_training_job( + project_id=self.project_id, + region=self.region, + display_name=self.display_name, + python_package_gcs_uri=self.python_package_gcs_uri, + python_module_name=self.python_module_name, + container_uri=self.container_uri, + model_serving_container_image_uri=self.model_serving_container_image_uri, + model_serving_container_predict_route=self.model_serving_container_predict_route, + model_serving_container_health_route=self.model_serving_container_health_route, + model_serving_container_command=self.model_serving_container_command, + model_serving_container_args=self.model_serving_container_args, + model_serving_container_environment_variables=self.model_serving_container_environment_variables, + model_serving_container_ports=self.model_serving_container_ports, + model_description=self.model_description, + model_instance_schema_uri=self.model_instance_schema_uri, + model_parameters_schema_uri=self.model_parameters_schema_uri, + model_prediction_schema_uri=self.model_prediction_schema_uri, + labels=self.labels, + training_encryption_spec_key_name=self.training_encryption_spec_key_name, + model_encryption_spec_key_name=self.model_encryption_spec_key_name, + staging_bucket=self.staging_bucket, + # RUN + dataset=self.dataset, + annotation_schema_uri=self.annotation_schema_uri, + model_display_name=self.model_display_name, + model_labels=self.model_labels, + base_output_dir=self.base_output_dir, + service_account=self.service_account, + network=self.network, + bigquery_destination=self.bigquery_destination, + args=self.args, + environment_variables=self.environment_variables, + replica_count=self.replica_count, + machine_type=self.machine_type, + accelerator_type=self.accelerator_type, + accelerator_count=self.accelerator_count, + boot_disk_type=self.boot_disk_type, + boot_disk_size_gb=self.boot_disk_size_gb, + training_fraction_split=self.training_fraction_split, + validation_fraction_split=self.validation_fraction_split, + test_fraction_split=self.test_fraction_split, + training_filter_split=self.training_filter_split, + validation_filter_split=self.validation_filter_split, + test_filter_split=self.test_filter_split, + predefined_split_column_name=self.predefined_split_column_name, + timestamp_split_column_name=self.timestamp_split_column_name, + tensorboard=self.tensorboard, + sync=True, + ) + + result = Model.to_dict(model) + model_id = self.hook.extract_model_id(result) + self.xcom_push( + context, + key="model_conf", + value={ + "model_id": model_id, + "region": self.region, + "project_id": self.project_id, + }, + ) + return result + + +class CreateCustomTrainingJobOperator(CustomTrainingJobBaseOperator): + """Create Custom Training job""" + + template_fields = [ + 'region', + 'script_path', + 'requirements', + 'impersonation_chain', + ] + operator_extra_links = (VertexAIModelLink(),) + + def __init__( + self, + *, + script_path: str, + requirements: Optional[Sequence[str]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.requirements = requirements + self.script_path = script_path + + def execute(self, context): + super().execute(context) + model = self.hook.create_custom_training_job( + project_id=self.project_id, + region=self.region, + display_name=self.display_name, + script_path=self.script_path, + container_uri=self.container_uri, + requirements=self.requirements, + model_serving_container_image_uri=self.model_serving_container_image_uri, + model_serving_container_predict_route=self.model_serving_container_predict_route, + model_serving_container_health_route=self.model_serving_container_health_route, + model_serving_container_command=self.model_serving_container_command, + model_serving_container_args=self.model_serving_container_args, + model_serving_container_environment_variables=self.model_serving_container_environment_variables, + model_serving_container_ports=self.model_serving_container_ports, + model_description=self.model_description, + model_instance_schema_uri=self.model_instance_schema_uri, + model_parameters_schema_uri=self.model_parameters_schema_uri, + model_prediction_schema_uri=self.model_prediction_schema_uri, + labels=self.labels, + training_encryption_spec_key_name=self.training_encryption_spec_key_name, + model_encryption_spec_key_name=self.model_encryption_spec_key_name, + staging_bucket=self.staging_bucket, + # RUN + dataset=self.dataset, + annotation_schema_uri=self.annotation_schema_uri, + model_display_name=self.model_display_name, + model_labels=self.model_labels, + base_output_dir=self.base_output_dir, + service_account=self.service_account, + network=self.network, + bigquery_destination=self.bigquery_destination, + args=self.args, + environment_variables=self.environment_variables, + replica_count=self.replica_count, + machine_type=self.machine_type, + accelerator_type=self.accelerator_type, + accelerator_count=self.accelerator_count, + boot_disk_type=self.boot_disk_type, + boot_disk_size_gb=self.boot_disk_size_gb, + training_fraction_split=self.training_fraction_split, + validation_fraction_split=self.validation_fraction_split, + test_fraction_split=self.test_fraction_split, + training_filter_split=self.training_filter_split, + validation_filter_split=self.validation_filter_split, + test_filter_split=self.test_filter_split, + predefined_split_column_name=self.predefined_split_column_name, + timestamp_split_column_name=self.timestamp_split_column_name, + tensorboard=self.tensorboard, + sync=True, + ) + + result = Model.to_dict(model) + model_id = self.hook.extract_model_id(result) + self.xcom_push( + context, + key="model_conf", + value={ + "model_id": model_id, + "region": self.region, + "project_id": self.project_id, + }, + ) + return result + + +class DeleteCustomTrainingJobOperator(BaseOperator): + """Deletes a CustomTrainingJob, CustomPythonTrainingJob, or CustomContainerTrainingJob.""" + + template_fields = ("region", "project_id", "impersonation_chain") + + def __init__( + self, + *, + training_pipeline_id: str, + custom_job_id: str, + region: str, + project_id: str, + retry: Optional[Retry] = None, + timeout: Optional[float] = None, + metadata: Optional[Sequence[Tuple[str, str]]] = "", + gcp_conn_id: str = "google_cloud_default", + delegate_to: Optional[str] = None, + impersonation_chain: Optional[Union[str, Sequence[str]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + self.training_pipeline = training_pipeline_id + self.custom_job = custom_job_id + self.region = region + self.project_id = project_id + self.retry = retry + self.timeout = timeout + self.metadata = metadata + self.gcp_conn_id = gcp_conn_id + self.delegate_to = delegate_to + self.impersonation_chain = impersonation_chain + + def execute(self, context: Dict): Review comment: I have changed Dict to Context in the last commit -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: [email protected] For queries about this service, please contact Infrastructure at: [email protected]
