ashb commented on code in PR #24743:
URL: https://github.com/apache/airflow/pull/24743#discussion_r912820582
##########
airflow/models/dagrun.py:
##########
@@ -631,6 +631,32 @@ def update_state(
session.merge(self)
# We do not flush here for performance reasons(It increases queries
count by +20)
+ from airflow.models import Dataset
+ from airflow.models.dataset_dag_run_event import DatasetDagRunEvent as
DDRE
+ from airflow.models.serialized_dag import SerializedDagModel
+
+ datasets = []
+ for task in self.dag.tasks:
+ for outlet in getattr(task, '_outlets', []):
+ if isinstance(outlet, Dataset):
+ datasets.append(outlet)
+ dataset_ids = [x.get_dataset_id(session=session) for x in datasets]
+ events_to_process =
session.query(DDRE).filter(DDRE.dataset_id.in_(dataset_ids)).all()
Review Comment:
> add a new top level scheduler query that will partition dags using the
same kind of skip locked logic of the main scheduler query and create necessary
dag runs
I was hoping to explicitly not have to do this (as mentioned in the thread I
linked.)
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]