mrybas opened a new issue, #40861:
URL: https://github.com/apache/airflow/issues/40861

   ### Official Helm Chart version
   
   1.14.0 (latest released)
   
   ### Apache Airflow version
   
   v2.9.3
   
   ### Kubernetes Version
   
   v1.29.5
   
   ### Helm Chart configuration
   
   ```
   executor: "CeleryKubernetesExecutor"
   config:
     logging:
       remote_logging: "True"
       remote_base_log_folder: s3://path/to/logs/
       remote_log_conn_id: ceph_default
       encrypt_s3_logs: 'False'
   logs:
     persistence:
       enabled: true
       size: 10Gi
   
   ```
   
   ### Docker Image customizations
   
   _No response_
   
   ### What happened
   
   When using Celery Kubernetes Executor, logs are not saved after deleting a 
pod, nor in persistence storage with settings
   ```
     logs:
       persistence:
         enabled: true
         size: 10Gi
   ```
   nor in s3 repository with settings
   ```
     config:
       logging:
         remote_logging: "True"
         remote_base_log_folder: s3://path/to/logs/
         remote_log_conn_id: ceph_default
         encrypt_s3_logs: 'False'
   ```
   At the same time, Celery Executor saves logs both in persistence storage and 
in s3
   
   ### What you think should happen instead
   
   after deleting the pod, the logs should be saved in the s3 storage
   
   ### How to reproduce
   
   deploy airflow from helm chart with
    ```
   executor: "CeleryKubernetesExecutor"
   config:
     logging:
       remote_logging: "True"
       remote_base_log_folder: s3://path/to/logs/
       remote_log_conn_id: ceph_default
       encrypt_s3_logs: 'False'
   ```
   and run dag
   ```
   import datetime
   import airflow
   
   from airflow.operators.python import PythonOperator
   import logging
   from time import sleep
   
   with airflow.DAG(
       "sample_celery_kubernetes",
       start_date=datetime.datetime(2022, 1, 1),
       schedule_interval=None,
   ) as dag:
   
       def kubernetes_example():
           logging.info("This task runs using KubernetesExecutor")
           sleep(10)
           logging.info("Task completed")
   
       def celery_example():
           logging.info("This task runs using CeleryExecutor")
           sleep(10)
           logging.info("Task completed")
   
       # To run with KubernetesExecutor, set queue to kubernetes
       task_kubernetes = PythonOperator(
           task_id="task-kubernetes",
           python_callable=kubernetes_example,
           dag=dag,
           queue="kubernetes",
       )
   
       # To run with CeleryExecutor, omit the queue argument
       task_celery = PythonOperator(
           task_id="task-celery", python_callable=celery_example, dag=dag
       )
   
       _ = task_kubernetes >> task_celery
   ```
   
   for Kubernetes Executor `*** No logs found on s3 for `
   for celery `*** Found logs in s3:`
   
   ### Anything else
   
   _No response_
   
   ### Are you willing to submit PR?
   
   - [ ] Yes I am willing to submit a PR!
   
   ### Code of Conduct
   
   - [X] I agree to follow this project's [Code of 
Conduct](https://github.com/apache/airflow/blob/main/CODE_OF_CONDUCT.md)
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to